import os os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) # make sure cuda dir is in the same level as modeling_rwkv.py from modeling_rwkv import RWKV import gc import gradio as gr import base64 from io import BytesIO from pathlib import Path import torch import torch.nn.functional as F from datetime import datetime from transformers import CLIPImageProcessor from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ctx_limit = 3500 title = 'ViusualRWKV-v6.0' visualrwkv_remote_path = "VisualRWKV-v060-1B6-v1.0-20240612.pth" model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-6", filename=visualrwkv_remote_path) # convert visualrwkv to RWKV and vision encoder ####################### output_dir = Path(model_path).parent state_dict = torch.load(model_path, map_location="cpu") rwkv_state_dict = {} visual_state_dict = {} for key in state_dict: if key.startswith("rwkv"): rwkv_state_dict[key[5:]] = state_dict[key].half() else: visual_state_dict[key] = state_dict[key].half() # save vision_local_path = output_dir / f"visual.pth" rwkv_local_path = output_dir / f"rwkv.pth" torch.save(rwkv_state_dict, rwkv_local_path) torch.save(visual_state_dict, vision_local_path) print("rwkv state dict has keys: ", len(rwkv_state_dict), "saved to ", rwkv_local_path) print("visual state dict has keys: ", len(visual_state_dict), "saved to ", vision_local_path) ########################################################################## vision_tower_name = 'openai/clip-vit-large-patch14-336' model = RWKV(model=str(rwkv_local_path), strategy='cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") ########################################################################## from modeling_vision import VisionEncoder, VisionEncoderConfig config = VisionEncoderConfig(n_embd=model.args.n_embd, vision_tower_name=vision_tower_name, grid_size=-1) visual_encoder = VisionEncoder(config) vision_state_dict = torch.load(vision_local_path, map_location='cpu') visual_encoder.load_state_dict(vision_state_dict, strict=False) image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) visual_encoder = visual_encoder.to(device) ########################################################################## def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') return f"\n{instruction}\n\nAssistant:" def generate( ctx, image_state, token_count=200, temperature=0.2, top_p=0.3, presencePenalty = 0.0, countPenalty = 1.0, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0, 261]) # stop generation whenever you see any token here ctx = ctx.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} for i in range(int(token_count)): if i == 0: input_ids = pipeline.encode(ctx)[-ctx_limit:] out, state = model.forward(tokens=input_ids, state=image_state) else: input_ids = [token] out, state = model.forward(tokens=input_ids, state=state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') del out del state gc.collect() torch.cuda.empty_cache() yield out_str.strip() ########################################################################## cur_dir = os.path.dirname(os.path.abspath(__file__)) examples = [ [ f"{cur_dir}/examples_pizza.jpg", "What are steps to cook it?" ], [ f"{cur_dir}/examples_bluejay.jpg", "what is the name of this bird?", ], [ f"{cur_dir}/examples_extreme_ironing.jpg", "What is unusual about this image?", ], [ f"{cur_dir}/examples_waterview.jpg", "What are the things I should be cautious about when I visit here?", ], ] def pil_image_to_base64(pil_image): buffered = BytesIO() pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.) # Encodes the image data into base64 format as a bytes object base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8') return base64_image image_cache = {} ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device) ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device) def compute_image_state(image): base64_image = pil_image_to_base64(image) if base64_image in image_cache: image_state = image_cache[base64_image] else: image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'] image = image.to(device) image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D] # apply layer norm to image feature, very important image_features = F.layer_norm(image_features, (image_features.shape[-1],), weight=ln0_weight, bias=ln0_bias) _, image_state = model.forward(embs=image_features, state=None) image_cache[base64_image] = image_state return image_state def chatbot(image, question): if image is None: yield "Please upload an image." return image_state = compute_image_state(image) input_text = generate_prompt(question) for output in generate(input_text, image_state): yield output with gr.Blocks(title=title) as demo: with gr.Row(): with gr.Column(): image = gr.Image(type='pil', label="Image") with gr.Column(): prompt = gr.Textbox(lines=8, label="Prompt", value="Render a clear and concise summary of the photo.") with gr.Row(): submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") with gr.Column(): output = gr.Textbox(label="Output", lines=10) data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"]) submit.click(chatbot, [image, prompt], [output]) clear.click(lambda: None, [], [output]) data.click(lambda x: x, [data], [image, prompt]) demo.launch(share=False)