import gradio as gr import os, gc, copy, torch from datetime import datetime from huggingface_hub import hf_hub_download from transformers import CLIPVisionModel import torch.nn as nn import torch.nn.functional as F ctx_limit = 3500 title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cpu fp32') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") class VisualRWKV(nn.Module): def __init__(self, args): super().__init__() self.args = args self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name) self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False) def encode_images(self, images): B, N, C, H, W = images.shape images = images.view(B*N, C, H, W) image_features = self.vit(images).last_hidden_state L, D = image_features.shape[1], image_features.shape[2] # rerange [B*N, L, D] -> [B, N, L, D] image_features = image_features.view(B, N, L, D)[:, 0, :, :] image_features = self.grid_pooling(image_features) return self.proj(image_features) def grid_pooling(self, image_features): if self.args.grid_size == -1: # no grid pooling return image_features if self.args.grid_size == 0: # take cls token return image_features[:, 0:1, :] if self.args.grid_size == 1: # global avg pooling return image_features.mean(dim=1, keepdim=True) cls_features = image_features[:, 0:1, :] image_features = image_features[:, 1:, :] #drop cls token B, L, D = image_features.shape H_or_W = int(L**0.5) image_features = image_features.view(B, H_or_W, H_or_W, D) grid_stride = H_or_W // self.args.grid_size image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2), padding=0, kernel_size=grid_stride, stride=grid_stride) image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D) return torch.cat((cls_features, image_features), dim=1) ########################################################################## def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" def evaluate( ctx, token_count=200, temperature=1.0, top_p=0.7, presencePenalty = 0.1, countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here ctx = ctx.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 del out del state gc.collect() yield out_str.strip() import gradio as gr import os, gc from datetime import datetime from huggingface_hub import hf_hub_download ctx_limit = 3500 title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cpu fp32') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") ########################################################################## from model import VisualEncoder, EmbeddingMixer, VisualEncoderConfig emb_mixer = EmbeddingMixer(model.w["emb.weight"], num_image_embeddings=4096) config = VisualEncoderConfig(n_embd=model.args.n_embd, vision_tower_name='openai/clip-vit-large-patch14-336', grid_size=-1) visual_encoder = VisualEncoder(config) ########################################################################## def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" def evaluate( ctx, token_count=200, temperature=1.0, top_p=0.7, presencePenalty = 0.1, countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here ctx = ctx.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 del out del state gc.collect() yield out_str.strip() ########################################################################## examples = [ [ "./extreme_ironing.jpg", "What is unusual about this image?", ], [ "./waterview.jpg", "What are the things I should be cautious about when I visit here?", ] ] def test(image, question): return question demo = gr.Interface(fn=test, inputs=["image", "text"], outputs="text", examples=examples, title=title, description="VisualRWKV-v5.0") demo.queue(concurrency_count=1, max_size=10) demo.launch(share=False)