import gradio as gr import os, gc from datetime import datetime from transformers import CLIPImageProcessor from huggingface_hub import hf_hub_download from typing import List, Dict from dataclasses import dataclass DEFAULT_IMAGE_TOKEN = "" ctx_limit = 3500 num_image_embeddings = 4096 title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv" vision_tower_name = 'openai/clip-vit-large-patch14-336' os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cpu fp32') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") ########################################################################## from modeling import VisualEncoder, EmbeddingMixer, VisualEncoderConfig emb_mixer = EmbeddingMixer(model.w["emb.weight"], num_image_embeddings=num_image_embeddings) config = VisualEncoderConfig(n_embd=model.args.n_embd, vision_tower_name=vision_tower_name, grid_size=-1) visual_encoder = VisualEncoder(config) image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) ########################################################################## def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') return f"\n{instruction}\n\nAssistant:" def generate( ctx, image_ids, token_count=200, temperature=1.0, top_p=0.7, presencePenalty = 0.1, countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here ctx = ctx.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): if i == 0: input_ids = (image_ids + pipeline.encode(ctx))[-ctx_limit:] else: input_ids = [token] out, state = model.forward(input_ids, state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 del out del state gc.collect() yield out_str.strip() ########################################################################## cur_dir = os.path.dirname(os.path.abspath(__file__)) examples = [ [ f"{cur_dir}/examples_extreme_ironing.jpg", "What is unusual about this image?", ], [ f"{cur_dir}/examples_waterview.jpg", "What are the things I should be cautious about when I visit here?", ] ] def test(image, question): image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'] image_features = visual_encoder.encode_images(image.unsqueeze(0)) emb_mixer.set_image_embeddings(image_features) model.w["emb.weight"] = emb_mixer.get_input_embeddings() image_ids = [i for i in range(emb_mixer.image_start_index, emb_mixer.image_start_index + len(image_features))] input_text = generate_prompt(question) for output in generate(input_text, image_ids): yield output with gr.Blocks(title=title) as demo: with gr.Row(): with gr.Column(): image = gr.Image(type='pil', label="Image") with gr.Column(): prompt = gr.Textbox(lines=2, label="Prompt", value="Assistant: Please upload an image and ask a question.") with gr.Column(): with gr.Row(): submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") output = gr.Textbox(label="Output", lines=5) data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"]) submit.click(test, [image, prompt], [output]) clear.click(lambda: None, [], [output]) data.click(lambda x: x, [data], [image, prompt]) demo.queue(max_size=10) demo.launch(share=False)