import gradio as gr import os, gc import base64 from io import BytesIO import torch import torch.nn.functional as F from transformers import CLIPImageProcessor from huggingface_hub import hf_hub_download ctx_limit = 3500 title = 'ViusualRWKV-v5' rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth" vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth" vision_tower_name = 'openai/clip-vit-large-patch14-336' os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) from modeling_vision import VisionEncoder, VisionEncoderConfig from modeling_rwkv import RWKV model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path) model = RWKV(model=model_path, strategy='cpu fp32') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") ########################################################################## config = VisionEncoderConfig(n_embd=model.args.n_embd, vision_tower_name=vision_tower_name, grid_size=-1) visual_encoder = VisionEncoder(config) vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path) vision_state_dict = torch.load(vision_local_path, map_location='cpu') visual_encoder.load_state_dict(vision_state_dict) image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) ########################################################################## def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') return f"\n{instruction}\n\nAssistant:" def generate( ctx, image_state, token_count=128, temperature=0.2, top_p=0.3, presencePenalty = 0.0, countPenalty = 1.0, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0, 261]) # stop generation whenever you see any token here ctx = ctx.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} for i in range(int(token_count)): if i == 0: input_ids = pipeline.encode(ctx)[-ctx_limit:] out, state = model.forward(tokens=input_ids, state=image_state) else: input_ids = [token] out, state = model.forward(tokens=input_ids, state=state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 del out del state gc.collect() yield out_str.strip() ########################################################################## cur_dir = os.path.dirname(os.path.abspath(__file__)) examples = [ [ f"{cur_dir}/examples_extreme_ironing.jpg", "What is unusual about this image?", ], [ f"{cur_dir}/examples_waterview.jpg", "What are the things I should be cautious about when I visit here?", ] ] def pil_image_to_base64(pil_image): buffered = BytesIO() pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.) # Encodes the image data into base64 format as a bytes object base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8') return base64_image image_cache = {} def compute_image_state(image): base64_image = pil_image_to_base64(image) if base64_image in image_cache: image_state = image_cache[base64_image] else: image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'] image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D] # apply layer norm to image feature, very important image_features = F.layer_norm(image_features, (image_features.shape[-1],), weight=model.w['blocks.0.ln0.weight'], bias=model.w['blocks.0.ln0.bias']) _, image_state = model.forward(embs=image_features, state=None) image_cache[base64_image] = image_state return image_state def chatbot(image, question): if image is None: yield "Please upload an image." return image_state = compute_image_state(image) input_text = generate_prompt(question) for output in generate(input_text, image_state): yield output with gr.Blocks(title=title) as demo: with gr.Row(): with gr.Column(): image = gr.Image(type='pil', label="Image") with gr.Column(): prompt = gr.Textbox(lines=6, label="Prompt", value="Render a clear and concise summary of the photo.") with gr.Row(): submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") with gr.Column(): output = gr.Textbox(label="Output", lines=8) data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"]) submit.click(chatbot, [image, prompt], [output]) clear.click(lambda: None, [], [output]) data.click(lambda x: x, [data], [image, prompt]) demo.queue(max_size=10) demo.launch(share=False)