Show trad_scores when mode is fair (and docs)
Browse files- .idea/.gitignore +3 -0
- .idea/FairEval.iml +12 -0
- .idea/inspectionProfiles/Project_Default.xml +13 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- FairEval.py +44 -13
- README.md +27 -20
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/FairEval.iml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="inheritedJdk" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="PLAIN" />
|
10 |
+
<option name="myDocStringFormat" value="Plain" />
|
11 |
+
</component>
|
12 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredIdentifiers">
|
6 |
+
<list>
|
7 |
+
<option value="Version" />
|
8 |
+
<option value="Pipeline" />
|
9 |
+
</list>
|
10 |
+
</option>
|
11 |
+
</inspection_tool>
|
12 |
+
</profile>
|
13 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/FairEval.iml" filepath="$PROJECT_DIR$/.idea/FairEval.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
FairEval.py
CHANGED
@@ -59,8 +59,8 @@ Args:
|
|
59 |
references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
|
60 |
mode: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
61 |
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
62 |
-
- 'fair': default fair score calculation.
|
63 |
-
- 'weighted': custom score calculation with the weights passed.
|
64 |
weights: dictionary with the weight of each error for the custom score calculation.
|
65 |
If none is passed and the mode is set to 'weighted', the following is used:
|
66 |
{"TP": {"TP": 1},
|
@@ -90,17 +90,48 @@ Examples:
|
|
90 |
>>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
91 |
>>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count')
|
92 |
>>> print(results)
|
93 |
-
{
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
"""
|
105 |
|
106 |
|
|
|
59 |
references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
|
60 |
mode: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
61 |
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
62 |
+
- 'fair': default fair score calculation. It will also show traditional scores for comparison.
|
63 |
+
- 'weighted': custom score calculation with the weights passed. It will also show traditional scores for comparison.
|
64 |
weights: dictionary with the weight of each error for the custom score calculation.
|
65 |
If none is passed and the mode is set to 'weighted', the following is used:
|
66 |
{"TP": {"TP": 1},
|
|
|
90 |
>>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
91 |
>>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count')
|
92 |
>>> print(results)
|
93 |
+
{
|
94 |
+
"MISC": {
|
95 |
+
"precision": 0.0,
|
96 |
+
"recall": 0.0,
|
97 |
+
"f1": 0.0,
|
98 |
+
"trad_prec": 0.0,
|
99 |
+
"trad_rec": 0.0,
|
100 |
+
"trad_f1": 0.0,
|
101 |
+
"TP": 0,
|
102 |
+
"FP": 0.0,
|
103 |
+
"FN": 0.0,
|
104 |
+
"LE": 0.0,
|
105 |
+
"BE": 1.0,
|
106 |
+
"LBE": 0.0
|
107 |
+
},
|
108 |
+
"PER": {
|
109 |
+
"precision": 1.0,
|
110 |
+
"recall": 1.0,
|
111 |
+
"f1": 1.0,
|
112 |
+
"trad_prec": 1.0,
|
113 |
+
"trad_rec": 1.0,
|
114 |
+
"trad_f1": 1.0,
|
115 |
+
"TP": 1,
|
116 |
+
"FP": 0.0,
|
117 |
+
"FN": 0.0,
|
118 |
+
"LE": 0.0,
|
119 |
+
"BE": 0.0,
|
120 |
+
"LBE": 0.0
|
121 |
+
},
|
122 |
+
"overall_precision": 0.6666666666666666,
|
123 |
+
"overall_recall": 0.6666666666666666,
|
124 |
+
"overall_f1": 0.6666666666666666,
|
125 |
+
"overall_trad_prec": 0.5,
|
126 |
+
"overall_trad_rec": 0.5,
|
127 |
+
"overall_trad_f1": 0.5,
|
128 |
+
"TP": 1,
|
129 |
+
"FP": 0.0,
|
130 |
+
"FN": 0.0,
|
131 |
+
"LE": 0.0,
|
132 |
+
"BE": 1.0,
|
133 |
+
"LBE": 0.0
|
134 |
+
}
|
135 |
"""
|
136 |
|
137 |
|
README.md
CHANGED
@@ -44,8 +44,8 @@ Predicted sentences must have the same number of tokens as the references.
|
|
44 |
The optional arguments are:
|
45 |
- **mode** *(str)*: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
46 |
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
47 |
-
- 'fair': default fair score calculation.
|
48 |
-
- 'weighted': custom score calculation with the weights passed.
|
49 |
- **weights** *(dict)*: dictionary with the weight of each error for the custom score calculation.
|
50 |
- **error_format** *(str)*: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc. Default value is 'count'.
|
51 |
- 'count': absolute count of each parameter.
|
@@ -64,8 +64,6 @@ If mode is 'traditional', the error parameters shown are the classical TP, FP an
|
|
64 |
TP remain the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
65 |
|
66 |
### Examples
|
67 |
-
A comprehensive set of side-by-side examples is shown [here](https://huggingface.co/spaces/hpi-dhc/FairEval/blob/main/HFFE_use_cases.pdf).
|
68 |
-
|
69 |
Considering the following input annotated sentences:
|
70 |
```python
|
71 |
>>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
|
@@ -82,6 +80,31 @@ Considering the following input annotated sentences:
|
|
82 |
```
|
83 |
|
84 |
The output for different modes and error_formats is:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
```python
|
86 |
>>> faireval.compute(predictions=y_pred, references=y_true, mode='traditional', error_format='count')
|
87 |
{'PER': {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'TP': 1, 'FP': 1, 'FN': 1},
|
@@ -108,22 +131,6 @@ The output for different modes and error_formats is:
|
|
108 |
'FN': 0.5714}
|
109 |
```
|
110 |
|
111 |
-
```python
|
112 |
-
>>> faireval.compute(predictions=y_pred, references=y_true, mode='fair', error_format='count')
|
113 |
-
{'PER': {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666, 'TP': 1, 'FP': 0, 'FN': 1, 'LE': 0, 'BE': 0, 'LBE': 0},
|
114 |
-
'INT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0, 'FP': 0, 'FN': 0, 'LE': 0, 'BE': 1, 'LBE': 1},
|
115 |
-
'OUT': {'precision': 0.6666, 'recall': 0.6666, 'f1': 0.6666, 'TP': 1, 'FP': 0, 'FN': 0, 'LE': 1, 'BE': 0, 'LBE': 0},
|
116 |
-
'overall_precision': 0.5714,
|
117 |
-
'overall_recall': 0.4444444444444444,
|
118 |
-
'overall_f1': 0.5,
|
119 |
-
'TP': 2,
|
120 |
-
'FP': 0,
|
121 |
-
'FN': 1,
|
122 |
-
'LE': 1,
|
123 |
-
'BE': 1,
|
124 |
-
'LBE': 1}
|
125 |
-
```
|
126 |
-
|
127 |
#### Values from Popular Papers
|
128 |
*Examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
129 |
|
|
|
44 |
The optional arguments are:
|
45 |
- **mode** *(str)*: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
46 |
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
47 |
+
- 'fair': default fair score calculation. Fair will also show traditional scores for comparison.
|
48 |
+
- 'weighted': custom score calculation with the weights passed. Weighted will also show traditional scores for comparison.
|
49 |
- **weights** *(dict)*: dictionary with the weight of each error for the custom score calculation.
|
50 |
- **error_format** *(str)*: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc. Default value is 'count'.
|
51 |
- 'count': absolute count of each parameter.
|
|
|
64 |
TP remain the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
65 |
|
66 |
### Examples
|
|
|
|
|
67 |
Considering the following input annotated sentences:
|
68 |
```python
|
69 |
>>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
|
|
|
80 |
```
|
81 |
|
82 |
The output for different modes and error_formats is:
|
83 |
+
```python
|
84 |
+
>>> faireval.compute(predictions=y_pred, references=y_true, mode='fair', error_format='count')
|
85 |
+
{'PER': {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666,
|
86 |
+
"trad_prec": 0.5, "trad_rec": 0.5, "trad_f1": 0.5,
|
87 |
+
'TP': 1, 'FP': 0, 'FN': 1, 'LE': 0, 'BE': 0, 'LBE': 0},
|
88 |
+
'INT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0,
|
89 |
+
"trad_prec": 0.0, "trad_rec": 0.0, "trad_f1": 0.0,
|
90 |
+
'TP': 0, 'FP': 0, 'FN': 0, 'LE': 0, 'BE': 1, 'LBE': 1},
|
91 |
+
'OUT': {'precision': 0.6666, 'recall': 0.6666, 'f1': 0.6666,
|
92 |
+
"trad_prec": 0.5, "trad_rec": 0.5, "trad_f1": 0.5,
|
93 |
+
'TP': 1, 'FP': 0, 'FN': 0, 'LE': 1, 'BE': 0, 'LBE': 0},
|
94 |
+
'overall_precision': 0.5714,
|
95 |
+
'overall_recall': 0.4444444444444444,
|
96 |
+
'overall_f1': 0.5,
|
97 |
+
'trad_prec': 0.5,
|
98 |
+
'trad_rec': 0.5,
|
99 |
+
'trad_f1': 0.5,
|
100 |
+
'TP': 2,
|
101 |
+
'FP': 0,
|
102 |
+
'FN': 1,
|
103 |
+
'LE': 1,
|
104 |
+
'BE': 1,
|
105 |
+
'LBE': 1}
|
106 |
+
```
|
107 |
+
|
108 |
```python
|
109 |
>>> faireval.compute(predictions=y_pred, references=y_true, mode='traditional', error_format='count')
|
110 |
{'PER': {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'TP': 1, 'FP': 1, 'FN': 1},
|
|
|
131 |
'FN': 0.5714}
|
132 |
```
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
#### Values from Popular Papers
|
135 |
*Examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
136 |
|