Re-upload project
Browse files- .gitattributes +33 -0
- FairEval.py +1651 -0
- README.md +96 -0
- app.py +6 -0
- fairevaluation.py +237 -0
- requirements.txt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
FairEval.py
ADDED
@@ -0,0 +1,1651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
'''
|
4 |
+
Created 09/2021
|
5 |
+
|
6 |
+
@author: Katrin Ortmann
|
7 |
+
'''
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import re
|
13 |
+
from typing import Iterable
|
14 |
+
from io import TextIOWrapper
|
15 |
+
from copy import deepcopy
|
16 |
+
|
17 |
+
#####################################
|
18 |
+
|
19 |
+
def precision(evaldict, version="traditional", weights={}):
|
20 |
+
"""
|
21 |
+
Calculate traditional, fair or weighted precision value.
|
22 |
+
|
23 |
+
Precision is calculated as the number of true positives
|
24 |
+
divided by the number of true positives plus false positives
|
25 |
+
plus (optionally) additional error types.
|
26 |
+
|
27 |
+
Input:
|
28 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
29 |
+
{"TP" : 10, "FP" : 2, "LE" : 1, ...}
|
30 |
+
|
31 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
32 |
+
false positives (key: FP) are required.
|
33 |
+
The 'fair' evaluation is based on true positives (TP),
|
34 |
+
false positives (FP), labeling errors (LE), boundary errors (BE)
|
35 |
+
and labeling-boundary errors (LBE).
|
36 |
+
The 'weighted' evaluation can include any error type
|
37 |
+
that is given as key in the weight dictionary.
|
38 |
+
For missing keys, the count is set to 0.
|
39 |
+
|
40 |
+
- The desired evaluation method. Options are 'traditional',
|
41 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
42 |
+
'weighted' is identical to 'fair'.
|
43 |
+
|
44 |
+
- A weight dictionary to specify how much an error type should
|
45 |
+
count as one of the traditional error types (or as true positive).
|
46 |
+
Per default, every traditional error is counted as one error (or true positive)
|
47 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
48 |
+
|
49 |
+
{"TP" : {"TP" : 1},
|
50 |
+
"FP" : {"FP" : 1},
|
51 |
+
"FN" : {"FN" : 1},
|
52 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
53 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
54 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
55 |
+
|
56 |
+
Other suggested weights to count boundary errors as half true positives:
|
57 |
+
|
58 |
+
{"TP" : {"TP" : 1},
|
59 |
+
"FP" : {"FP" : 1},
|
60 |
+
"FN" : {"FN" : 1},
|
61 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
62 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
63 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
64 |
+
|
65 |
+
Or to include different types of boundary errors:
|
66 |
+
|
67 |
+
{"TP" : {"TP" : 1},
|
68 |
+
"FP" : {"FP" : 1},
|
69 |
+
"FN" : {"FN" : 1},
|
70 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
71 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
72 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
73 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
74 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
75 |
+
|
76 |
+
Output:
|
77 |
+
The precision for the given input values.
|
78 |
+
In case of a ZeroDivisionError, the precision is set to 0.
|
79 |
+
|
80 |
+
"""
|
81 |
+
traditional_weights = {
|
82 |
+
"TP" : {"TP" : 1},
|
83 |
+
"FP" : {"FP" : 1},
|
84 |
+
"FN" : {"FN" : 1}
|
85 |
+
}
|
86 |
+
default_fair_weights = {
|
87 |
+
"TP" : {"TP" : 1},
|
88 |
+
"FP" : {"FP" : 1},
|
89 |
+
"FN" : {"FN" : 1},
|
90 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
91 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
92 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
93 |
+
}
|
94 |
+
try:
|
95 |
+
tp = 0
|
96 |
+
fp = 0
|
97 |
+
|
98 |
+
#Set default weights for traditional evaluation
|
99 |
+
if version == "traditional":
|
100 |
+
weights = traditional_weights
|
101 |
+
|
102 |
+
#Set weights to default
|
103 |
+
#for fair evaluation or if no weights are given
|
104 |
+
elif version == "fair" or not weights:
|
105 |
+
weights = default_fair_weights
|
106 |
+
|
107 |
+
#Add weighted errors to true positive count
|
108 |
+
tp += sum(
|
109 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
110 |
+
)
|
111 |
+
|
112 |
+
#Add weighted errors to false positive count
|
113 |
+
fp += sum(
|
114 |
+
[w.get("FP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
115 |
+
)
|
116 |
+
|
117 |
+
#Calculate precision
|
118 |
+
return tp / (tp + fp)
|
119 |
+
|
120 |
+
#Output 0 if there is neither true nor false positives
|
121 |
+
except ZeroDivisionError:
|
122 |
+
return 0.0
|
123 |
+
|
124 |
+
######################
|
125 |
+
|
126 |
+
def recall(evaldict, version="traditional", weights={}):
|
127 |
+
"""
|
128 |
+
Calculate traditional, fair or weighted recall value.
|
129 |
+
|
130 |
+
Recall is calculated as the number of true positives
|
131 |
+
divided by the number of true positives plus false negatives
|
132 |
+
plus (optionally) additional error types.
|
133 |
+
|
134 |
+
Input:
|
135 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
136 |
+
{"TP" : 10, "FN" : 2, "LE" : 1, ...}
|
137 |
+
|
138 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
139 |
+
false negatives (key: FN) are required.
|
140 |
+
The 'fair' evaluation is based on true positives (TP),
|
141 |
+
false negatives (FN), labeling errors (LE), boundary errors (BE)
|
142 |
+
and labeling-boundary errors (LBE).
|
143 |
+
The 'weighted' evaluation can include any error type
|
144 |
+
that is given as key in the weight dictionary.
|
145 |
+
For missing keys, the count is set to 0.
|
146 |
+
|
147 |
+
- The desired evaluation method. Options are 'traditional',
|
148 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
149 |
+
'weighted' is identical to 'fair'.
|
150 |
+
|
151 |
+
- A weight dictionary to specify how much an error type should
|
152 |
+
count as one of the traditional error types (or as true positive).
|
153 |
+
Per default, every traditional error is counted as one error (or true positive)
|
154 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
155 |
+
|
156 |
+
{"TP" : {"TP" : 1},
|
157 |
+
"FP" : {"FP" : 1},
|
158 |
+
"FN" : {"FN" : 1},
|
159 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
160 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
161 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
162 |
+
|
163 |
+
Other suggested weights to count boundary errors as half true positives:
|
164 |
+
|
165 |
+
{"TP" : {"TP" : 1},
|
166 |
+
"FP" : {"FP" : 1},
|
167 |
+
"FN" : {"FN" : 1},
|
168 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
169 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
170 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
171 |
+
|
172 |
+
Or to include different types of boundary errors:
|
173 |
+
|
174 |
+
{"TP" : {"TP" : 1},
|
175 |
+
"FP" : {"FP" : 1},
|
176 |
+
"FN" : {"FN" : 1},
|
177 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
178 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
179 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
180 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
181 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
182 |
+
|
183 |
+
Output:
|
184 |
+
The recall for the given input values.
|
185 |
+
In case of a ZeroDivisionError, the recall is set to 0.
|
186 |
+
|
187 |
+
"""
|
188 |
+
traditional_weights = {
|
189 |
+
"TP" : {"TP" : 1},
|
190 |
+
"FP" : {"FP" : 1},
|
191 |
+
"FN" : {"FN" : 1}
|
192 |
+
}
|
193 |
+
default_fair_weights = {
|
194 |
+
"TP" : {"TP" : 1},
|
195 |
+
"FP" : {"FP" : 1},
|
196 |
+
"FN" : {"FN" : 1},
|
197 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
198 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
199 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
200 |
+
}
|
201 |
+
try:
|
202 |
+
tp = 0
|
203 |
+
fn = 0
|
204 |
+
|
205 |
+
#Set default weights for traditional evaluation
|
206 |
+
if version == "traditional":
|
207 |
+
weights = traditional_weights
|
208 |
+
|
209 |
+
#Set weights to default
|
210 |
+
#for fair evaluation or if no weights are given
|
211 |
+
elif version == "fair" or not weights:
|
212 |
+
weights = default_fair_weights
|
213 |
+
|
214 |
+
#Add weighted errors to true positive count
|
215 |
+
tp += sum(
|
216 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
217 |
+
)
|
218 |
+
|
219 |
+
#Add weighted errors to false negative count
|
220 |
+
fn += sum(
|
221 |
+
[w.get("FN", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
222 |
+
)
|
223 |
+
|
224 |
+
#Calculate recall
|
225 |
+
return tp / (tp + fn)
|
226 |
+
|
227 |
+
#Return zero if there are neither true positives nor false negatives
|
228 |
+
except ZeroDivisionError:
|
229 |
+
return 0.0
|
230 |
+
|
231 |
+
######################
|
232 |
+
|
233 |
+
def fscore(evaldict):
|
234 |
+
"""
|
235 |
+
Calculates F1-Score from given precision and recall values.
|
236 |
+
|
237 |
+
Input: A dictionary with a precision (key: Prec) and recall (key: Rec) value.
|
238 |
+
Output: The F1-Score. In case of a ZeroDivisionError, the F1-Score is set to 0.
|
239 |
+
"""
|
240 |
+
try:
|
241 |
+
return 2 * (evaldict.get("Prec", 0) * evaldict.get("Rec", 0)) \
|
242 |
+
/ (evaldict.get("Prec", 0) + evaldict.get("Rec", 0))
|
243 |
+
except ZeroDivisionError:
|
244 |
+
return 0.0
|
245 |
+
|
246 |
+
######################
|
247 |
+
|
248 |
+
def overlap_type(span1, span2):
|
249 |
+
"""
|
250 |
+
Determine the error type of two (overlapping) spans.
|
251 |
+
|
252 |
+
The function checks, if and how span1 and span2 overlap.
|
253 |
+
The first span serves as the basis against which the second
|
254 |
+
span is evaluated.
|
255 |
+
|
256 |
+
span1 ---XXXX---
|
257 |
+
span2 ---XXXX--- TP (identical)
|
258 |
+
span2 ----XXXX-- BEO (overlap)
|
259 |
+
span2 --XXXX---- BEO (overlap)
|
260 |
+
span2 ----XX---- BES (smaller)
|
261 |
+
span2 ---XX----- BES (smaller)
|
262 |
+
span2 --XXXXXX-- BEL (larger)
|
263 |
+
span2 --XXXXX--- BEL (larger)
|
264 |
+
span2 -X-------- False (no overlap)
|
265 |
+
|
266 |
+
Input:
|
267 |
+
Tuples (beginSpan1, endSpan1) and (beginSpan2, endSpan2),
|
268 |
+
where begin and end are the indices of the corresponding tokens.
|
269 |
+
|
270 |
+
Output:
|
271 |
+
Either one of the following strings
|
272 |
+
- "TP" = span1 and span2 are identical, i.e., actually no error here
|
273 |
+
- "BES" = span2 is shorter and contained within span1 (with at most one identical boundary)
|
274 |
+
- "BEL" = span2 is longer and contains span1 (with at most one identical boundary)
|
275 |
+
- "BEO" = span1 and span2 overlap with no identical boundary
|
276 |
+
or False if span1 and span2 do not overlap.
|
277 |
+
"""
|
278 |
+
#Identical spans
|
279 |
+
if span1[0] == span2[0] and span1[1] == span2[1]:
|
280 |
+
return "TP"
|
281 |
+
|
282 |
+
#Start of spans is identical
|
283 |
+
if span1[0] == span2[0]:
|
284 |
+
#End of 2 is within span1
|
285 |
+
if span2[1] >= span1[0] and span2[1] < span1[1]:
|
286 |
+
return "BES"
|
287 |
+
#End of 2 is behind span1
|
288 |
+
else:
|
289 |
+
return "BEL"
|
290 |
+
#Start of 2 is before span1
|
291 |
+
elif span2[0] < span1[0]:
|
292 |
+
#End is before span 1
|
293 |
+
if span2[1] < span1[0]:
|
294 |
+
return False
|
295 |
+
#End is within span1
|
296 |
+
elif span2[1] < span1[1]:
|
297 |
+
return "BEO"
|
298 |
+
#End is identical or to the right
|
299 |
+
else:
|
300 |
+
return "BEL"
|
301 |
+
#Start of 2 is within span1
|
302 |
+
elif span2[0] >= span1[0] and span2[0] <= span1[1]:
|
303 |
+
#End of 2 is wihtin span1
|
304 |
+
if span2[1] <= span1[1]:
|
305 |
+
return "BES"
|
306 |
+
#End of 2 is to the right
|
307 |
+
else:
|
308 |
+
return "BEO"
|
309 |
+
#Start of 2 is behind span1
|
310 |
+
else:
|
311 |
+
return False
|
312 |
+
|
313 |
+
#####################################
|
314 |
+
|
315 |
+
def compare_spans(target_spans, system_spans, focus="target"):
|
316 |
+
"""
|
317 |
+
Compare system and target spans to identify correct/incorrect annotations.
|
318 |
+
|
319 |
+
The function takes a list of target spans and system spans.
|
320 |
+
Each span is a 4-tuple of
|
321 |
+
- label: the span type as string
|
322 |
+
- begin: the index of first token; equals end for spans of length 1
|
323 |
+
- end: the index of the last token; equals begin for spans of length 1
|
324 |
+
- tokens: a set of token indices included in the span
|
325 |
+
(this allows the correct evaluation of
|
326 |
+
partially and multiply overlapping spans;
|
327 |
+
to allow for changes of the token set,
|
328 |
+
the span tuple is actually implemented as a list.)
|
329 |
+
|
330 |
+
The function first performs traditional evaluation on these spans
|
331 |
+
to identify true positives, false positives, and false negatives.
|
332 |
+
Then, the additional error types for fair evaluation are determined,
|
333 |
+
following steps 1 to 4:
|
334 |
+
1. Count 1:1 mappings (TP, LE)
|
335 |
+
2. Count boundary errors (BE = BES + BEL + BEO)
|
336 |
+
3. Count labeling-boundary errors (LBE)
|
337 |
+
4. Count 1:0 and 0:1 mappings (FN, FP)
|
338 |
+
|
339 |
+
Input:
|
340 |
+
- List of target spans
|
341 |
+
- List of system spans
|
342 |
+
- Wether to focus on the system or target annotation (default: target)
|
343 |
+
|
344 |
+
Output: A dictionary containing
|
345 |
+
- the counts of TP, FP, and FN according to traditional evaluation
|
346 |
+
(per label and overall)
|
347 |
+
- the counts of TP, FP, LE, BE, BES, BEL, BEO, and FN
|
348 |
+
(per label and overall; BE = BES + BEL + BEO)
|
349 |
+
- a confusion matrix {target_label1 : {system_label1 : count,
|
350 |
+
system_label2 : count,
|
351 |
+
...},
|
352 |
+
target_label2 : ...
|
353 |
+
}
|
354 |
+
with an underscore '_' representing an empty label (FN/FP)
|
355 |
+
"""
|
356 |
+
|
357 |
+
##################################
|
358 |
+
|
359 |
+
def _max_sim(t, S):
|
360 |
+
"""
|
361 |
+
Determine the most similar span s from S for span t.
|
362 |
+
|
363 |
+
Similarity is defined as
|
364 |
+
1. the maximum number of shared tokens between s and t and
|
365 |
+
2. the minimum number of tokens only in t
|
366 |
+
If multiple spans are equally similar, the shortest s is chosen.
|
367 |
+
If still multiple spans are equally similar, the first one in the list is chosen,
|
368 |
+
which corresponds to the left-most one if sentences are read from left to right.
|
369 |
+
|
370 |
+
Input:
|
371 |
+
- Span t as 4-tuple [label, begin, end, token_set]
|
372 |
+
- List S containing > 1 spans
|
373 |
+
|
374 |
+
Output: The most similar s for t.
|
375 |
+
"""
|
376 |
+
S.sort(key=lambda s: (0-len(t[3].intersection(s[3])),
|
377 |
+
len(t[3].difference(s[3])),
|
378 |
+
len(s[3].difference(t[3])),
|
379 |
+
s[2]-s[1]))
|
380 |
+
return S[0]
|
381 |
+
|
382 |
+
##################################
|
383 |
+
|
384 |
+
traditional_error_types = ["TP", "FP", "FN"]
|
385 |
+
additional_error_types = ["LE", "BE", "BEO", "BES", "BEL", "LBE"]
|
386 |
+
|
387 |
+
#Initialize empty eval dict
|
388 |
+
eval_dict = {"overall" : {"traditional" : {err_type : 0 for err_type
|
389 |
+
in traditional_error_types},
|
390 |
+
"fair" : {err_type : 0 for err_type
|
391 |
+
in traditional_error_types + additional_error_types}},
|
392 |
+
"per_label" : {"traditional" : {},
|
393 |
+
"fair" : {}},
|
394 |
+
"conf" : {}}
|
395 |
+
|
396 |
+
#Initialize per-label dict
|
397 |
+
for s in target_spans + system_spans:
|
398 |
+
if not s[0] in eval_dict["per_label"]["traditional"]:
|
399 |
+
eval_dict["per_label"]["traditional"][s[0]] = {err_type : 0 for err_type
|
400 |
+
in traditional_error_types}
|
401 |
+
eval_dict["per_label"]["fair"][s[0]] = {err_type : 0 for err_type
|
402 |
+
in traditional_error_types + additional_error_types}
|
403 |
+
#Initialize confusion matrix
|
404 |
+
if not s[0] in eval_dict["conf"]:
|
405 |
+
eval_dict["conf"][s[0]] = {}
|
406 |
+
eval_dict["conf"]["_"] = {}
|
407 |
+
for lab in list(eval_dict["conf"])+["_"]:
|
408 |
+
for lab2 in list(eval_dict["conf"])+["_"]:
|
409 |
+
eval_dict["conf"][lab][lab2] = 0
|
410 |
+
|
411 |
+
################################################
|
412 |
+
### Traditional evaluation (overall + per label)
|
413 |
+
|
414 |
+
for t in target_spans:
|
415 |
+
#Spans in target and system annotation are true positives
|
416 |
+
if t in system_spans:
|
417 |
+
eval_dict["overall"]["traditional"]["TP"] += 1
|
418 |
+
eval_dict["per_label"]["traditional"][t[0]]["TP"] += 1
|
419 |
+
#Spans only in target annotation are false negatives
|
420 |
+
else:
|
421 |
+
eval_dict["overall"]["traditional"]["FN"] += 1
|
422 |
+
eval_dict["per_label"]["traditional"][t[0]]["FN"] += 1
|
423 |
+
for s in system_spans:
|
424 |
+
#Spans only in system annotation are false positives
|
425 |
+
if not s in target_spans:
|
426 |
+
eval_dict["overall"]["traditional"]["FP"] += 1
|
427 |
+
eval_dict["per_label"]["traditional"][s[0]]["FP"] += 1
|
428 |
+
|
429 |
+
###########################################################
|
430 |
+
### Fair evaluation (overall, per label + confusion matrix)
|
431 |
+
|
432 |
+
### Identical spans (TP and LE)
|
433 |
+
|
434 |
+
### TP
|
435 |
+
#Identify true positives (identical spans between target and system)
|
436 |
+
tps = [t for t in target_spans if t in system_spans]
|
437 |
+
for t in tps:
|
438 |
+
s = [s for s in system_spans if s == t]
|
439 |
+
if s:
|
440 |
+
s = s[0]
|
441 |
+
eval_dict["overall"]["fair"]["TP"] += 1
|
442 |
+
eval_dict["per_label"]["fair"][t[0]]["TP"] += 1
|
443 |
+
#After counting, remove from input lists
|
444 |
+
system_spans.remove(s)
|
445 |
+
target_spans.remove(t)
|
446 |
+
|
447 |
+
### LE
|
448 |
+
#Identify labeling error: identical span but different label
|
449 |
+
les = [t for t in target_spans
|
450 |
+
if any(t[0] != s[0] and t[1:3] == s[1:3] for s in system_spans)]
|
451 |
+
for t in les:
|
452 |
+
s = [s for s in system_spans if t[0] != s[0] and t[1:3] == s[1:3]]
|
453 |
+
if s:
|
454 |
+
s = s[0]
|
455 |
+
#Overall: count as one LE
|
456 |
+
eval_dict["overall"]["fair"]["LE"] += 1
|
457 |
+
#Per label: depending on focus count for target label or system label
|
458 |
+
if focus == "target":
|
459 |
+
eval_dict["per_label"]["fair"][t[0]]["LE"] += 1
|
460 |
+
elif focus == "system":
|
461 |
+
eval_dict["per_label"]["fair"][s[0]]["LE"] += 1
|
462 |
+
#Add to confusion matrix
|
463 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
464 |
+
#After counting, remove from input lists
|
465 |
+
system_spans.remove(s)
|
466 |
+
target_spans.remove(t)
|
467 |
+
|
468 |
+
### Boundary errors
|
469 |
+
|
470 |
+
#Create lists to collect matched spans
|
471 |
+
counted_target = list()
|
472 |
+
counted_system = list()
|
473 |
+
|
474 |
+
#Sort lists by span length (shortest to longest)
|
475 |
+
target_spans.sort(key=lambda t : t[2] - t[1])
|
476 |
+
system_spans.sort(key=lambda s : s[2] - s[1])
|
477 |
+
|
478 |
+
### BE
|
479 |
+
|
480 |
+
## 1. Compare input lists
|
481 |
+
#Identify boundary errors: identical label but different, overlapping span
|
482 |
+
i = 0
|
483 |
+
while i < len(target_spans):
|
484 |
+
t = target_spans[i]
|
485 |
+
|
486 |
+
#Find possible boundary errors
|
487 |
+
be = [s for s in system_spans
|
488 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
489 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
490 |
+
if not be:
|
491 |
+
i += 1
|
492 |
+
continue
|
493 |
+
|
494 |
+
#If there is more than one possible BE, take most similar one
|
495 |
+
if len(be) > 1:
|
496 |
+
s = _max_sim(t, be)
|
497 |
+
else:
|
498 |
+
s = be[0]
|
499 |
+
|
500 |
+
#Determine overlap type
|
501 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
502 |
+
|
503 |
+
#Overall: Count as BE and more fine-grained BE type
|
504 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
505 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
506 |
+
|
507 |
+
#Per-label: count as general BE and specific BE type
|
508 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
509 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
510 |
+
|
511 |
+
#Add to confusion matrix
|
512 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
513 |
+
|
514 |
+
#Remove matched spans from input list
|
515 |
+
system_spans.remove(s)
|
516 |
+
target_spans.remove(t)
|
517 |
+
|
518 |
+
#Remove matched tokens from spans
|
519 |
+
matching_tokens = t[3].intersection(s[3])
|
520 |
+
s[3] = s[3].difference(matching_tokens)
|
521 |
+
t[3] = t[3].difference(matching_tokens)
|
522 |
+
|
523 |
+
#Move matched spans to counted list
|
524 |
+
counted_system.append(s)
|
525 |
+
counted_target.append(t)
|
526 |
+
|
527 |
+
## 2. Compare input target list with matched system list
|
528 |
+
i = 0
|
529 |
+
while i < len(target_spans):
|
530 |
+
t = target_spans[i]
|
531 |
+
|
532 |
+
#Find possible boundary errors in already matched spans
|
533 |
+
#that still share unmatched tokens
|
534 |
+
be = [s for s in counted_system
|
535 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
536 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
537 |
+
and t[3].intersection(s[3])]
|
538 |
+
if not be:
|
539 |
+
i += 1
|
540 |
+
continue
|
541 |
+
|
542 |
+
#If there is more than one possible BE, take most similar one
|
543 |
+
if len(be) > 1:
|
544 |
+
s = _max_sim(t, be)
|
545 |
+
else:
|
546 |
+
s = be[0]
|
547 |
+
|
548 |
+
#Determine overlap type
|
549 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
550 |
+
|
551 |
+
#Overall: Count as BE and more fine-grained BE type
|
552 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
553 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
554 |
+
|
555 |
+
#Per-label: count as general BE and specific BE type
|
556 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
557 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
558 |
+
|
559 |
+
#Add to confusion matrix
|
560 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
561 |
+
|
562 |
+
#Remove matched span from input list
|
563 |
+
target_spans.remove(t)
|
564 |
+
|
565 |
+
#Remove matched tokens from spans
|
566 |
+
matching_tokens = t[3].intersection(s[3])
|
567 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
568 |
+
t[3] = t[3].difference(matching_tokens)
|
569 |
+
|
570 |
+
#Move target span to counted list
|
571 |
+
counted_target.append(t)
|
572 |
+
|
573 |
+
## 3. Compare input system list with matched target list
|
574 |
+
i = 0
|
575 |
+
while i < len(system_spans):
|
576 |
+
s = system_spans[i]
|
577 |
+
|
578 |
+
#Find possible boundary errors in already matched target spans
|
579 |
+
be = [t for t in counted_target
|
580 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
581 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
582 |
+
and t[3].intersection(s[3])]
|
583 |
+
if not be:
|
584 |
+
i += 1
|
585 |
+
continue
|
586 |
+
|
587 |
+
#If there is more than one possible BE, take most similar one
|
588 |
+
if len(be) > 1:
|
589 |
+
t = _max_sim(s, be)
|
590 |
+
else:
|
591 |
+
t = be[0]
|
592 |
+
|
593 |
+
#Determine overlap type
|
594 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
595 |
+
|
596 |
+
#Overall: Count as BE and more fine-grained BE type
|
597 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
598 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
599 |
+
|
600 |
+
#Per-label: count as general BE and specific BE type
|
601 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
602 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
603 |
+
|
604 |
+
#Add to confusion matrix
|
605 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
606 |
+
|
607 |
+
#Remove matched span from input list
|
608 |
+
system_spans.remove(s)
|
609 |
+
|
610 |
+
#Remove matched tokens from spans
|
611 |
+
matching_tokens = t[3].intersection(s[3])
|
612 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
613 |
+
s[3] = s[3].difference(matching_tokens)
|
614 |
+
|
615 |
+
#Move system span to counted list
|
616 |
+
counted_system.append(s)
|
617 |
+
|
618 |
+
### LBE
|
619 |
+
|
620 |
+
## 1. Compare input lists
|
621 |
+
#Identify labeling-boundary errors: different label but overlapping span
|
622 |
+
i = 0
|
623 |
+
while i < len(target_spans):
|
624 |
+
t = target_spans[i]
|
625 |
+
|
626 |
+
#Find possible boundary errors
|
627 |
+
lbe = [s for s in system_spans
|
628 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
629 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
630 |
+
if not lbe:
|
631 |
+
i += 1
|
632 |
+
continue
|
633 |
+
|
634 |
+
#If there is more than one possible LBE, take most similar one
|
635 |
+
if len(lbe) > 1:
|
636 |
+
s = _max_sim(t, lbe)
|
637 |
+
else:
|
638 |
+
s = lbe[0]
|
639 |
+
|
640 |
+
#Overall: count as LBE
|
641 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
642 |
+
|
643 |
+
#Per label: depending on focus count as LBE for target or system label
|
644 |
+
if focus == "target":
|
645 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
646 |
+
elif focus == "system":
|
647 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
648 |
+
|
649 |
+
#Add to confusion matrix
|
650 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
651 |
+
|
652 |
+
#Remove matched spans from input list
|
653 |
+
system_spans.remove(s)
|
654 |
+
target_spans.remove(t)
|
655 |
+
|
656 |
+
#Remove matched tokens from spans
|
657 |
+
matching_tokens = t[3].intersection(s[3])
|
658 |
+
s[3] = s[3].difference(matching_tokens)
|
659 |
+
t[3] = t[3].difference(matching_tokens)
|
660 |
+
|
661 |
+
#Move spans to counted lists
|
662 |
+
counted_system.append(s)
|
663 |
+
counted_target.append(t)
|
664 |
+
|
665 |
+
## 2. Compare input target list with matched system list
|
666 |
+
i = 0
|
667 |
+
while i < len(target_spans):
|
668 |
+
t = target_spans[i]
|
669 |
+
|
670 |
+
#Find possible labeling-boundary errors in already matched system spans
|
671 |
+
lbe = [s for s in counted_system
|
672 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
673 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
674 |
+
and t[3].intersection(s[3])]
|
675 |
+
if not lbe:
|
676 |
+
i += 1
|
677 |
+
continue
|
678 |
+
|
679 |
+
#If there is more than one possible LBE, take most similar one
|
680 |
+
if len(lbe) > 1:
|
681 |
+
s = _max_sim(t, lbe)
|
682 |
+
else:
|
683 |
+
s = lbe[0]
|
684 |
+
|
685 |
+
#Overall: count as LBE
|
686 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
687 |
+
|
688 |
+
#Per label: depending on focus count as LBE for target or system label
|
689 |
+
if focus == "target":
|
690 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
691 |
+
elif focus == "system":
|
692 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
693 |
+
|
694 |
+
#Add to confusion matrix
|
695 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
696 |
+
|
697 |
+
#Remove matched span from input list
|
698 |
+
target_spans.remove(t)
|
699 |
+
|
700 |
+
#Remove matched tokens from spans
|
701 |
+
matching_tokens = t[3].intersection(s[3])
|
702 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
703 |
+
t[3] = t[3].difference(matching_tokens)
|
704 |
+
|
705 |
+
#Move target span to counted list
|
706 |
+
counted_target.append(t)
|
707 |
+
|
708 |
+
## 3. Compare input system list with matched target list
|
709 |
+
i = 0
|
710 |
+
while i < len(system_spans):
|
711 |
+
s = system_spans[i]
|
712 |
+
|
713 |
+
#Find possible labeling-boundary errors in already matched target spans
|
714 |
+
lbe = [t for t in counted_target
|
715 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
716 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
717 |
+
and t[3].intersection(s[3])]
|
718 |
+
if not lbe:
|
719 |
+
i += 1
|
720 |
+
continue
|
721 |
+
|
722 |
+
#If there is more than one possible LBE, take most similar one
|
723 |
+
if len(lbe) > 1:
|
724 |
+
t = _max_sim(s, lbe)
|
725 |
+
else:
|
726 |
+
t = lbe[0]
|
727 |
+
|
728 |
+
#Overall: count as LBE
|
729 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
730 |
+
|
731 |
+
#Per label: depending on focus count as LBE for target or system label
|
732 |
+
if focus == "target":
|
733 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
734 |
+
elif focus == "system":
|
735 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
736 |
+
|
737 |
+
#Add to confusion matrix
|
738 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
739 |
+
|
740 |
+
#Remove matched span from input list
|
741 |
+
system_spans.remove(s)
|
742 |
+
|
743 |
+
#Remove matched tokens from spans
|
744 |
+
matching_tokens = t[3].intersection(s[3])
|
745 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
746 |
+
s[3] = s[3].difference(matching_tokens)
|
747 |
+
|
748 |
+
#Move matched system span to counted list
|
749 |
+
counted_system.append(s)
|
750 |
+
|
751 |
+
### 1:0 and 0:1 mappings
|
752 |
+
|
753 |
+
#FN: identify false negatives
|
754 |
+
for t in target_spans:
|
755 |
+
eval_dict["overall"]["fair"]["FN"] += 1
|
756 |
+
eval_dict["per_label"]["fair"][t[0]]["FN"] += 1
|
757 |
+
eval_dict["conf"][t[0]]["_"] += 1
|
758 |
+
|
759 |
+
#FP: identify false positives
|
760 |
+
for s in system_spans:
|
761 |
+
eval_dict["overall"]["fair"]["FP"] += 1
|
762 |
+
eval_dict["per_label"]["fair"][s[0]]["FP"] += 1
|
763 |
+
eval_dict["conf"]["_"][s[0]] += 1
|
764 |
+
|
765 |
+
return eval_dict
|
766 |
+
|
767 |
+
############################
|
768 |
+
|
769 |
+
def annotation_stats(target_spans, **config):
|
770 |
+
"""
|
771 |
+
Count the target annotations to display simple statistics.
|
772 |
+
|
773 |
+
The function takes a list of target spans
|
774 |
+
with each span being a 4-tuple [label, begin, end, token_set]
|
775 |
+
and adds the included labels to the general data stats dictionary.
|
776 |
+
|
777 |
+
Input:
|
778 |
+
- List of target spans
|
779 |
+
- Config dictionary
|
780 |
+
|
781 |
+
Output: The config dictionary is modified in-place.
|
782 |
+
"""
|
783 |
+
stats_dict = config.get("data_stats", {})
|
784 |
+
for span in target_spans:
|
785 |
+
if span[0] in stats_dict:
|
786 |
+
stats_dict[span[0]] += 1
|
787 |
+
else:
|
788 |
+
stats_dict[span[0]] = 1
|
789 |
+
config["data_stats"] = stats_dict
|
790 |
+
|
791 |
+
############################
|
792 |
+
|
793 |
+
def get_spans(sentence, **config):
|
794 |
+
"""
|
795 |
+
Return spans from CoNLL2000 or span files.
|
796 |
+
|
797 |
+
The function determines the data format of the input sentence
|
798 |
+
and extracts the spans from it accordingly.
|
799 |
+
|
800 |
+
If desired, punctuation can be ignored (config['ignore_punct'] == True)
|
801 |
+
for files in the CoNLL2000 format that include POS information.
|
802 |
+
The following list of tags is considered as punctuation:
|
803 |
+
['$.', '$,', '$(', #STTS
|
804 |
+
'PUNCT', #UPOS
|
805 |
+
'PUNKT', 'KOMMA', 'COMMA', 'KLAMMER', #custom
|
806 |
+
'.', ',', ':', '(', ')', '"', '‘', '“', '’', '”' #PTB
|
807 |
+
]
|
808 |
+
|
809 |
+
Labels that should be ignored (included in config['exclude']
|
810 |
+
or not included in config['labels'] if config['labels'] != 'all')
|
811 |
+
are also removed from the resulting list.
|
812 |
+
|
813 |
+
Input:
|
814 |
+
- List of lines for a given sentence
|
815 |
+
- Config dictionary
|
816 |
+
|
817 |
+
Output: List of spans that are included in the sentence.
|
818 |
+
"""
|
819 |
+
|
820 |
+
################
|
821 |
+
|
822 |
+
def spans_from_conll(sentence):
|
823 |
+
"""
|
824 |
+
Read annotation spans from a CoNLL2000 file.
|
825 |
+
|
826 |
+
The function takes a list of lines (belonging to one sentence)
|
827 |
+
and extracts the annotated spans. The lines are expected to
|
828 |
+
contain three space-separated columns:
|
829 |
+
|
830 |
+
Form XPOS Annotation
|
831 |
+
|
832 |
+
Form: Word form
|
833 |
+
XPOS: POS tag of the word (ideally STTS, UPOS, or PTB)
|
834 |
+
Annotation: Span annotation in BIO format (see below);
|
835 |
+
multiple spans are separated with the pipe symbol '|'
|
836 |
+
|
837 |
+
BIO tags consist of the token's position in the span
|
838 |
+
(begin 'B', inside 'I', outside 'O'), a dash '-' and the span label,
|
839 |
+
e.g., B-NP, I-AC, or in the case of stacked annotations I-RELC|B-NP.
|
840 |
+
|
841 |
+
The function accepts 'O', '_' and '' as annotations outside of spans.
|
842 |
+
|
843 |
+
Input: List of lines belonging to one sentence.
|
844 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
845 |
+
"""
|
846 |
+
spans = []
|
847 |
+
span_stack = []
|
848 |
+
|
849 |
+
#For each token
|
850 |
+
for t, tok in enumerate(sentence):
|
851 |
+
|
852 |
+
#Token is [Form, XPOS, Annotation]
|
853 |
+
tok = tok.split()
|
854 |
+
|
855 |
+
#Token is not annotated
|
856 |
+
if tok[-1] in ["O", "_", ""]:
|
857 |
+
#Add previous stack to span list
|
858 |
+
#(sorted from left to right)
|
859 |
+
while span_stack:
|
860 |
+
spans.append(span_stack.pop(0))
|
861 |
+
span_stack = []
|
862 |
+
continue
|
863 |
+
|
864 |
+
#Token is annotated
|
865 |
+
#Split stacked annotations at pipe
|
866 |
+
annotations = tok[-1].strip().split("|")
|
867 |
+
|
868 |
+
#While there are more annotation levels on
|
869 |
+
#the stack than at the current token,
|
870 |
+
#close annotations on the stack (i.e., move
|
871 |
+
#them to result list)
|
872 |
+
while len(span_stack) > len(annotations):
|
873 |
+
spans.append(span_stack.pop())
|
874 |
+
|
875 |
+
#For each annotation of the current token
|
876 |
+
for i, annotation in enumerate(annotations):
|
877 |
+
|
878 |
+
#New span
|
879 |
+
if annotation.startswith("B-"):
|
880 |
+
|
881 |
+
#If it's the first annotation level and there is
|
882 |
+
#something on the stack, move it to result list
|
883 |
+
if i == 0 and span_stack:
|
884 |
+
while span_stack:
|
885 |
+
spans.append(span_stack.pop(0))
|
886 |
+
#Otherwise, end same-level annotation on the
|
887 |
+
#stack (because a new span begins here) and
|
888 |
+
#move it to the result list
|
889 |
+
else:
|
890 |
+
while len(span_stack) > i:
|
891 |
+
spans.append(span_stack.pop())
|
892 |
+
|
893 |
+
#Last part of BIO tag is the label
|
894 |
+
label = annotation.split("-")[1]
|
895 |
+
|
896 |
+
#Create a new span with this token's
|
897 |
+
#index as start and end (incremendet by one).
|
898 |
+
s = [label, t+1, t+1, {t+1}]
|
899 |
+
|
900 |
+
#Add on top of stack
|
901 |
+
span_stack.append(s)
|
902 |
+
|
903 |
+
#Span continues
|
904 |
+
elif annotation.startswith("I-"):
|
905 |
+
#Increment the end index of the span
|
906 |
+
#at the level of this annotation on the stack
|
907 |
+
span_stack[i][2] = t+1
|
908 |
+
#Also, add the index to the token set
|
909 |
+
span_stack[i][-1].add(t+1)
|
910 |
+
|
911 |
+
#Add sentence final span(s)
|
912 |
+
while span_stack:
|
913 |
+
spans.append(span_stack.pop(0))
|
914 |
+
|
915 |
+
return spans
|
916 |
+
|
917 |
+
################
|
918 |
+
|
919 |
+
def spans_from_lines(sentence):
|
920 |
+
"""
|
921 |
+
Read annotation spans from a span file.
|
922 |
+
|
923 |
+
The function takes a list of lines (belonging to one sentence)
|
924 |
+
and extracts the annotated spans. The lines are expected to
|
925 |
+
contain four tab-separated columns:
|
926 |
+
|
927 |
+
Label Begin End Tokens
|
928 |
+
|
929 |
+
Label: Span label
|
930 |
+
Begin: Index of the first included token (must be convertible to int)
|
931 |
+
End: Index of the last included token (must be convertible to int
|
932 |
+
and equal or greater than begin)
|
933 |
+
Tokens: Comma-separated list of indices of the tokens in the span
|
934 |
+
(must be convertible to int with begin <= i <= end);
|
935 |
+
if no (valid) indices are given, the range begin:end is used
|
936 |
+
|
937 |
+
Input: List of lines belonging to one sentence.
|
938 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
939 |
+
"""
|
940 |
+
spans = []
|
941 |
+
for line in sentence:
|
942 |
+
vals = line.split("\t")
|
943 |
+
label = vals[0]
|
944 |
+
if not label:
|
945 |
+
print("ERROR: Missing label in input.")
|
946 |
+
return []
|
947 |
+
try:
|
948 |
+
begin = int(vals[1])
|
949 |
+
if begin < 1: raise ValueError
|
950 |
+
except ValueError:
|
951 |
+
print("ERROR: Begin {0} is not a legal index.".format(vals[1]))
|
952 |
+
return []
|
953 |
+
try:
|
954 |
+
end = int(vals[2])
|
955 |
+
if end < 1: raise ValueError
|
956 |
+
if end < begin: begin, end = end, begin
|
957 |
+
except ValueError:
|
958 |
+
print("ERROR: End {0} is not a legal index.".format(vals[2]))
|
959 |
+
return []
|
960 |
+
try:
|
961 |
+
toks = [int(v.strip()) for v in vals[-1].split(",")
|
962 |
+
if int(v.strip()) >= begin and int(v.strip()) <= end]
|
963 |
+
toks = set(toks)
|
964 |
+
except ValueError:
|
965 |
+
toks = []
|
966 |
+
if not toks:
|
967 |
+
toks = [i for i in range(begin, end+1)]
|
968 |
+
spans.append([label, begin, end, toks])
|
969 |
+
return spans
|
970 |
+
|
971 |
+
################
|
972 |
+
|
973 |
+
#Determine data format
|
974 |
+
|
975 |
+
#Span files contain 4 tab-separated columns
|
976 |
+
if len(sentence[0].split("\t")) == 4:
|
977 |
+
format = "spans"
|
978 |
+
spans = spans_from_lines(sentence)
|
979 |
+
|
980 |
+
#CoNLL2000 files contain 3 space-separated columns
|
981 |
+
elif len(sentence[0].split(" ")) == 3:
|
982 |
+
format = "conll2000"
|
983 |
+
spans = spans_from_conll(sentence)
|
984 |
+
else:
|
985 |
+
print("ERROR: Unknown input format")
|
986 |
+
return []
|
987 |
+
|
988 |
+
#Exclude punctuation from CoNLL2000, if desired
|
989 |
+
if format == "conll2000" \
|
990 |
+
and config.get("ignore_punct") == True:
|
991 |
+
|
992 |
+
#For each punctuation tok
|
993 |
+
for i, line in enumerate(sentence):
|
994 |
+
if line.split(" ")[1] in ["$.", "$,", "$(", #STTS
|
995 |
+
"PUNCT", #UPOS
|
996 |
+
"PUNKT", "KOMMA", "COMMA", "KLAMMER", #custom
|
997 |
+
".", ",", ":", "(", ")", "\"", "‘", "“", "’", "”" #PTB
|
998 |
+
]:
|
999 |
+
|
1000 |
+
for s in range(len(spans)):
|
1001 |
+
#Remove punc tok from set
|
1002 |
+
spans[s][-1].discard(i+1)
|
1003 |
+
|
1004 |
+
#If span begins with punc, move begin
|
1005 |
+
if spans[s][1] == i+1:
|
1006 |
+
if spans[s][2] != None and spans[s][2] > i+1:
|
1007 |
+
spans[s][1] = i+2
|
1008 |
+
else:
|
1009 |
+
spans[s][1] = None
|
1010 |
+
|
1011 |
+
#If span ends with punc, move end
|
1012 |
+
if spans[s][2] == i+1:
|
1013 |
+
if spans[s][1] != None and spans[s][1] <= i:
|
1014 |
+
spans[s][2] = i
|
1015 |
+
else:
|
1016 |
+
spans[s][2] = None
|
1017 |
+
|
1018 |
+
#Remove empty spans
|
1019 |
+
spans = [s for s in spans if s[1] != None and s[2] != None and len(s[3]) > 0]
|
1020 |
+
|
1021 |
+
#Exclude unwanted labels
|
1022 |
+
spans = [s for s in spans
|
1023 |
+
if not s[0] in config.get("exclude", [])
|
1024 |
+
and ("all" in config.get("labels", [])
|
1025 |
+
or s[0] in config.get("labels", []))]
|
1026 |
+
|
1027 |
+
return spans
|
1028 |
+
|
1029 |
+
############################
|
1030 |
+
|
1031 |
+
def get_sentences(filename):
|
1032 |
+
"""
|
1033 |
+
Reads sentences from input files.
|
1034 |
+
|
1035 |
+
The function iterates through the input file and
|
1036 |
+
yields a list of lines that belong to one sentence.
|
1037 |
+
Sentences are expected to be separated by an empty line.
|
1038 |
+
|
1039 |
+
Input: Filename of the input file.
|
1040 |
+
Output: Yields a list of lines for each sentence.
|
1041 |
+
"""
|
1042 |
+
file = open(filename, mode="r", encoding="utf-8")
|
1043 |
+
sent = []
|
1044 |
+
|
1045 |
+
for line in file:
|
1046 |
+
#New line: yield collected lines
|
1047 |
+
if sent and not line.strip():
|
1048 |
+
yield sent
|
1049 |
+
sent = []
|
1050 |
+
#New line but nothing to yield
|
1051 |
+
elif not line.strip():
|
1052 |
+
continue
|
1053 |
+
#Collect line of current sentence
|
1054 |
+
else:
|
1055 |
+
sent.append(line.strip())
|
1056 |
+
|
1057 |
+
#Last sentence if file doesn't end with empty line
|
1058 |
+
if sent:
|
1059 |
+
yield sent
|
1060 |
+
|
1061 |
+
file.close()
|
1062 |
+
|
1063 |
+
#############################
|
1064 |
+
|
1065 |
+
def add_dict(base_dict, dict_to_add):
|
1066 |
+
"""
|
1067 |
+
Take a base dictionary and add the values
|
1068 |
+
from another dictionary to it.
|
1069 |
+
|
1070 |
+
Contrary to standard dict update methods,
|
1071 |
+
this function does not overwrite values in the
|
1072 |
+
base dictionary. Instead, it is meant to add
|
1073 |
+
the values of the second dictionary to the values
|
1074 |
+
in the base dictionary. The dictionary is modified in-place.
|
1075 |
+
|
1076 |
+
For example:
|
1077 |
+
|
1078 |
+
>> base = {"A" : 1, "B" : {"c" : 2, "d" : 3}, "C" : [1, 2, 3]}
|
1079 |
+
>> add = {"A" : 1, "B" : {"c" : 1, "e" : 1}, "C" : [4], "D" : 2}
|
1080 |
+
>> add_dict(base, add)
|
1081 |
+
|
1082 |
+
will create a base dictionary:
|
1083 |
+
|
1084 |
+
>> base
|
1085 |
+
{'A': 2, 'B': {'c': 3, 'd': 3, 'e': 1}, 'C': [1, 2, 3, 4], 'D': 2}
|
1086 |
+
|
1087 |
+
The function can handle different types of nested structures.
|
1088 |
+
- Integers and float values are summed up.
|
1089 |
+
- Lists are appended
|
1090 |
+
- Sets are added (set union)
|
1091 |
+
- Dictionaries are added recursively
|
1092 |
+
For other value types, the base dictionary is left unchanged.
|
1093 |
+
|
1094 |
+
Input: Base dictionary and dictionary to be added.
|
1095 |
+
Output: Base dictionary.
|
1096 |
+
"""
|
1097 |
+
|
1098 |
+
#For each key in second dict
|
1099 |
+
for key, val in dict_to_add.items():
|
1100 |
+
|
1101 |
+
#It is already in the base dict
|
1102 |
+
if key in base_dict:
|
1103 |
+
|
1104 |
+
#It has an integer or float value
|
1105 |
+
if isinstance(val, (int, float)) \
|
1106 |
+
and isinstance(base_dict[key], (int, float)):
|
1107 |
+
|
1108 |
+
#Increment value in base dict
|
1109 |
+
base_dict[key] += val
|
1110 |
+
|
1111 |
+
#It has an iterable as value
|
1112 |
+
elif isinstance(val, Iterable) \
|
1113 |
+
and isinstance(base_dict[key], Iterable):
|
1114 |
+
|
1115 |
+
#List
|
1116 |
+
if isinstance(val, list) \
|
1117 |
+
and isinstance(base_dict[key], list):
|
1118 |
+
#Append
|
1119 |
+
base_dict[key].extend(val)
|
1120 |
+
|
1121 |
+
#Set
|
1122 |
+
elif isinstance(val, set) \
|
1123 |
+
and isinstance(base_dict[key], set):
|
1124 |
+
#Set union
|
1125 |
+
base_dict[key].update(val)
|
1126 |
+
|
1127 |
+
#Dict
|
1128 |
+
elif isinstance(val, dict) \
|
1129 |
+
and isinstance(base_dict[key], dict):
|
1130 |
+
#Recursively repeat
|
1131 |
+
add_dict(base_dict[key], val)
|
1132 |
+
|
1133 |
+
#Something else
|
1134 |
+
else:
|
1135 |
+
#Do nothing
|
1136 |
+
pass
|
1137 |
+
|
1138 |
+
#It has something else as value
|
1139 |
+
else:
|
1140 |
+
#Do nothing
|
1141 |
+
pass
|
1142 |
+
|
1143 |
+
#It is not in the base dict
|
1144 |
+
else:
|
1145 |
+
#Insert values from second dict into base
|
1146 |
+
base_dict[key] = deepcopy(val)
|
1147 |
+
|
1148 |
+
return base_dict
|
1149 |
+
|
1150 |
+
#############################
|
1151 |
+
|
1152 |
+
def calculate_results(eval_dict, **config):
|
1153 |
+
"""
|
1154 |
+
Calculate overall precision, recall, and F-scores.
|
1155 |
+
|
1156 |
+
The function takes an evaluation dictionary with error counts
|
1157 |
+
and applies the precision, recall and fscore functions.
|
1158 |
+
|
1159 |
+
It will calculate the traditional metrics
|
1160 |
+
and fair and/or weighted metrics, depending on the
|
1161 |
+
value of config['eval_method'].
|
1162 |
+
|
1163 |
+
The results are stored in the eval dict as 'Prec', 'Rec' and 'F1'
|
1164 |
+
for overall and per-label counts.
|
1165 |
+
|
1166 |
+
Input: Evaluation dict and config dict.
|
1167 |
+
Output: Evaluation dict with added precision, recall and F1 values.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
#If weighted evaluation should be performed
|
1171 |
+
#copy error counts from fair evaluation
|
1172 |
+
if "weighted" in config.get("eval_method", []):
|
1173 |
+
eval_dict["overall"]["weighted"] = {}
|
1174 |
+
for err_type in eval_dict["overall"]["fair"]:
|
1175 |
+
eval_dict["overall"]["weighted"][err_type] = eval_dict["overall"]["fair"][err_type]
|
1176 |
+
for label in eval_dict["per_label"]["fair"]:
|
1177 |
+
eval_dict["per_label"]["weighted"][label] = {}
|
1178 |
+
for err_type in eval_dict["per_label"]["fair"][label]:
|
1179 |
+
eval_dict["per_label"]["weighted"][label][err_type] = eval_dict["per_label"]["fair"][label][err_type]
|
1180 |
+
|
1181 |
+
#For each evaluation method
|
1182 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1183 |
+
|
1184 |
+
#Overall results
|
1185 |
+
eval_dict["overall"][version]["Prec"] = precision(eval_dict["overall"][version],
|
1186 |
+
version,
|
1187 |
+
config.get("weights", {}))
|
1188 |
+
eval_dict["overall"][version]["Rec"] = recall(eval_dict["overall"][version],
|
1189 |
+
version,
|
1190 |
+
config.get("weights", {}))
|
1191 |
+
eval_dict["overall"][version]["F1"] = fscore(eval_dict["overall"][version])
|
1192 |
+
|
1193 |
+
#Per label results
|
1194 |
+
for label in eval_dict["per_label"][version]:
|
1195 |
+
eval_dict["per_label"][version][label]["Prec"] = precision(eval_dict["per_label"][version][label],
|
1196 |
+
version,
|
1197 |
+
config.get("weights", {}))
|
1198 |
+
eval_dict["per_label"][version][label]["Rec"] = recall(eval_dict["per_label"][version][label],
|
1199 |
+
version,
|
1200 |
+
config.get("weights", {}))
|
1201 |
+
eval_dict["per_label"][version][label]["F1"] = fscore(eval_dict["per_label"][version][label])
|
1202 |
+
|
1203 |
+
return eval_dict
|
1204 |
+
|
1205 |
+
#############################
|
1206 |
+
|
1207 |
+
def output_results(eval_dict, **config):
|
1208 |
+
"""
|
1209 |
+
Write evaluation results to the output (file).
|
1210 |
+
|
1211 |
+
The function takes an evaluation dict and writes
|
1212 |
+
all results to the specified output (file):
|
1213 |
+
|
1214 |
+
1. Traditional evaluation results
|
1215 |
+
2. Additional evaluation results (fair and/or weighted)
|
1216 |
+
3. Result comparison for different evaluation methods
|
1217 |
+
4. Confusion matrix
|
1218 |
+
5. Data statistics
|
1219 |
+
|
1220 |
+
Input: Evaluation dict and config dict.
|
1221 |
+
"""
|
1222 |
+
outfile = config.get("eval_out", sys.stdout)
|
1223 |
+
|
1224 |
+
### Output results for each evaluation method
|
1225 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1226 |
+
print(file=outfile)
|
1227 |
+
print("### {0} evaluation:".format(version.title()), file=outfile)
|
1228 |
+
|
1229 |
+
#Determine error categories to output
|
1230 |
+
if version == "traditional":
|
1231 |
+
cats = ["TP", "FP", "FN"]
|
1232 |
+
elif version == "fair" or not config.get("weights", {}):
|
1233 |
+
cats = ["TP", "FP", "LE", "BE", "LBE", "FN"]
|
1234 |
+
else:
|
1235 |
+
cats = list(config.get("weights").keys())
|
1236 |
+
|
1237 |
+
#Print header
|
1238 |
+
print("Label", "\t".join(cats), "Prec", "Rec", "F1", sep="\t", file=outfile)
|
1239 |
+
|
1240 |
+
#Output results for each label
|
1241 |
+
for label,val in sorted(eval_dict["per_label"][version].items()):
|
1242 |
+
print(label,
|
1243 |
+
"\t".join([str(val.get(cat, eval_dict["per_label"]["fair"].get(cat, 0)))
|
1244 |
+
for cat in cats]),
|
1245 |
+
"\t".join(["{:04.2f}".format(val.get(metric, 0)*100)
|
1246 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1247 |
+
sep="\t", file=outfile)
|
1248 |
+
|
1249 |
+
#Output overall results
|
1250 |
+
print("overall",
|
1251 |
+
"\t".join([str(eval_dict["overall"][version].get(cat, eval_dict["overall"]["fair"].get(cat, 0)))
|
1252 |
+
for cat in cats]),
|
1253 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
1254 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1255 |
+
sep="\t", file=outfile)
|
1256 |
+
|
1257 |
+
### Output result comparison
|
1258 |
+
print(file=outfile)
|
1259 |
+
print("### Comparison:", file=outfile)
|
1260 |
+
print("Version", "Prec", "Rec", "F1", sep="\t", file=outfile)
|
1261 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1262 |
+
print(version.title(),
|
1263 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
1264 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1265 |
+
sep="\t", file=outfile)
|
1266 |
+
|
1267 |
+
### Output confusion matrix
|
1268 |
+
print(file=outfile)
|
1269 |
+
print("### Confusion matrix:", file=outfile)
|
1270 |
+
|
1271 |
+
#Get set of target labels
|
1272 |
+
labels = {lab for lab in eval_dict["conf"]}
|
1273 |
+
|
1274 |
+
#Add system labels
|
1275 |
+
labels = list(labels.union({syslab
|
1276 |
+
for lab in eval_dict["conf"]
|
1277 |
+
for syslab in eval_dict["conf"][lab]}))
|
1278 |
+
|
1279 |
+
#Sort alphabetically for output
|
1280 |
+
labels.sort()
|
1281 |
+
|
1282 |
+
#Print top row with system labels
|
1283 |
+
print(r"Target\System", "\t".join(labels), sep="\t", file=outfile)
|
1284 |
+
|
1285 |
+
#Print rows with target labels and counts
|
1286 |
+
for targetlab in labels:
|
1287 |
+
print(targetlab,
|
1288 |
+
"\t".join([str(eval_dict["conf"][targetlab].get(syslab, 0))
|
1289 |
+
for syslab in labels]),
|
1290 |
+
sep="\t", file=outfile)
|
1291 |
+
|
1292 |
+
#Output data statistic
|
1293 |
+
print(file=outfile)
|
1294 |
+
print("### Target data stats:", file=outfile)
|
1295 |
+
print("Label", "Freq", "%", sep="\t", file=outfile)
|
1296 |
+
total = sum(config.get("data_stats", {}).values())
|
1297 |
+
for lab, freq in config.get("data_stats", {}).items():
|
1298 |
+
print(lab, freq, "{:04.2f}".format(freq/total*100), sep="\t", file=outfile)
|
1299 |
+
|
1300 |
+
#Close output if it is a file
|
1301 |
+
if isinstance(config.get("eval_out"), TextIOWrapper):
|
1302 |
+
outfile.close()
|
1303 |
+
|
1304 |
+
#############################
|
1305 |
+
|
1306 |
+
def read_config(config_file):
|
1307 |
+
"""
|
1308 |
+
Function to set program parameters as specified in the config file.
|
1309 |
+
|
1310 |
+
The following parameters are handled:
|
1311 |
+
|
1312 |
+
- target_in: path to the target file(s) with gold standard annotation
|
1313 |
+
-> output: 'target_files' : [list of target file paths]
|
1314 |
+
|
1315 |
+
- system_in: path to the system's output file(s), which are evaluated
|
1316 |
+
-> output: 'system_files' : [list of system file paths]
|
1317 |
+
|
1318 |
+
- eval_out: path or filename, where evaluation results should be stored
|
1319 |
+
if value is a path, output file 'path/eval.csv' is created
|
1320 |
+
if value is 'cmd' or missing, output is set to sys.stdout
|
1321 |
+
-> output: 'eval_out' : output file or sys.stdout
|
1322 |
+
|
1323 |
+
- labels: comma-separated list of labels to evaluate
|
1324 |
+
defaults to 'all'
|
1325 |
+
-> output: 'labels' : [list of labels as strings]
|
1326 |
+
|
1327 |
+
- exclude: comma-separated list of labels to exclude from evaluation
|
1328 |
+
always contains 'NONE' and 'EMPTY'
|
1329 |
+
-> output: 'exclude' : [list of labels as strings]
|
1330 |
+
|
1331 |
+
- ignore_punct: wether to ignore punctuation during evaluation (true/false)
|
1332 |
+
-> output: 'ignore_punct' : True/False
|
1333 |
+
|
1334 |
+
- focus: wether to focus the evaluation on 'target' or 'system' annotations
|
1335 |
+
defaults to 'target'
|
1336 |
+
-> output: 'focus' : 'target' or 'system'
|
1337 |
+
|
1338 |
+
- weights: weights that should be applied during calculation of precision
|
1339 |
+
and recall; at the same time can serve as a list of additional
|
1340 |
+
error types to include in the evaluation
|
1341 |
+
the weights are parsed from comma-separated input formulas of the form
|
1342 |
+
|
1343 |
+
error_type = weight * TP + weight2 * FP + weight3 * FN
|
1344 |
+
|
1345 |
+
-> output: 'weights' : { 'error type' : {
|
1346 |
+
'TP' : weight,
|
1347 |
+
'FP' : weight,
|
1348 |
+
'FN' : weight
|
1349 |
+
},
|
1350 |
+
'another error type' : {...}
|
1351 |
+
}
|
1352 |
+
|
1353 |
+
- eval_method: defines which evaluation method(s) to use
|
1354 |
+
one or more of: 'traditional', 'fair', 'weighted'
|
1355 |
+
if value is 'all' or missing, all available methods are returned
|
1356 |
+
-> output: 'eval_method' : [list of eval methods]
|
1357 |
+
|
1358 |
+
Input: Filename of the config file.
|
1359 |
+
Output: Settings dictionary.
|
1360 |
+
"""
|
1361 |
+
|
1362 |
+
############################
|
1363 |
+
|
1364 |
+
def _parse_config(key, val):
|
1365 |
+
"""
|
1366 |
+
Internal function to set specific values for the given keys.
|
1367 |
+
In case of illegal values, prints error message and sets key and/or value to None.
|
1368 |
+
Input: Key and value from config file
|
1369 |
+
Output: Modified key and value
|
1370 |
+
"""
|
1371 |
+
if key in ["target_in", "system_in"]:
|
1372 |
+
if os.path.isdir(val):
|
1373 |
+
val = os.path.normpath(val)
|
1374 |
+
files = [os.path.join(val, f) for f in os.listdir(val)]
|
1375 |
+
elif os.path.isfile(val):
|
1376 |
+
files = [os.path.normpath(val)]
|
1377 |
+
else:
|
1378 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
1379 |
+
return None, None
|
1380 |
+
if key == "target_in":
|
1381 |
+
return "target_files", files
|
1382 |
+
elif key == "system_in":
|
1383 |
+
return "system_files", files
|
1384 |
+
|
1385 |
+
elif key == "eval_out":
|
1386 |
+
if os.path.isdir(val):
|
1387 |
+
val = os.path.normpath(val)
|
1388 |
+
outfile = os.path.join(val, "eval.csv")
|
1389 |
+
elif os.path.isfile(val):
|
1390 |
+
outfile = os.path.normpath(val)
|
1391 |
+
elif val == "cmd":
|
1392 |
+
outfile = sys.stdout
|
1393 |
+
else:
|
1394 |
+
try:
|
1395 |
+
p, f = os.path.split(val)
|
1396 |
+
if not os.path.isdir(p):
|
1397 |
+
os.makedirs(p)
|
1398 |
+
outfile = os.path.join(p, f)
|
1399 |
+
except:
|
1400 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
1401 |
+
return None, None
|
1402 |
+
return key, outfile
|
1403 |
+
|
1404 |
+
elif key in ["labels", "exclude"]:
|
1405 |
+
labels = list(set([v.strip() for v in val.split(",") if v.strip()]))
|
1406 |
+
if key == "exclude":
|
1407 |
+
labels.append("NONE")
|
1408 |
+
labels.append("EMPTY")
|
1409 |
+
return key, labels
|
1410 |
+
|
1411 |
+
elif key == "ignore_punct":
|
1412 |
+
if val.strip().lower() == "false":
|
1413 |
+
return key, False
|
1414 |
+
else:
|
1415 |
+
return key, True
|
1416 |
+
|
1417 |
+
elif key == "focus":
|
1418 |
+
if val.strip().lower() == "system":
|
1419 |
+
return key, "system"
|
1420 |
+
else:
|
1421 |
+
return key, "target"
|
1422 |
+
|
1423 |
+
elif key == "weights":
|
1424 |
+
if val == "default":
|
1425 |
+
return key, {"TP" : {"TP" : 1},
|
1426 |
+
"FP" : {"FP" : 1},
|
1427 |
+
"FN" : {"FN" : 1},
|
1428 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1429 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1430 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
1431 |
+
else:
|
1432 |
+
formulas = val.split(",")
|
1433 |
+
weights = {}
|
1434 |
+
|
1435 |
+
#For each given formula, i.e., for each error type
|
1436 |
+
for f in formulas:
|
1437 |
+
|
1438 |
+
#Match error type as string-initial letters before equal sign =
|
1439 |
+
error_type = re.match(r"\s*(?P<Error>\w+)\s*=", f)
|
1440 |
+
if error_type == None:
|
1441 |
+
print("WARNING: No error type found in weight formula '{0}'.".format(f))
|
1442 |
+
continue
|
1443 |
+
else:
|
1444 |
+
error_type = error_type.group("Error")
|
1445 |
+
|
1446 |
+
weights[error_type] = {}
|
1447 |
+
|
1448 |
+
#Match weight for TP
|
1449 |
+
w_tp = re.search(r"(?P<TP>\d*\.?\d+)\s*\*?\s*TP", f)
|
1450 |
+
if w_tp == None:
|
1451 |
+
print("WARNING: Missing weight for TP for error type {0}. Set to 0.".format(error_type))
|
1452 |
+
weights[error_type]["TP"] = 0
|
1453 |
+
else:
|
1454 |
+
try:
|
1455 |
+
w_tp = w_tp.group("TP")
|
1456 |
+
w_tp = float(w_tp)
|
1457 |
+
weights[error_type]["TP"] = w_tp
|
1458 |
+
except ValueError:
|
1459 |
+
print("WARNING: Weight for TP for error type {0} is not a number. Set to 0.".format(error_type))
|
1460 |
+
weights[error_type]["TP"] = 0
|
1461 |
+
|
1462 |
+
#Match weight for FP
|
1463 |
+
w_fp = re.search(r"(?P<FP>\d*\.?\d+)\s*\*?\s*FP", f)
|
1464 |
+
if w_fp == None:
|
1465 |
+
print("WARNING: Missing weight for FP for error type {0}. Set to 0.".format(error_type))
|
1466 |
+
weights[error_type]["FP"] = 0
|
1467 |
+
else:
|
1468 |
+
try:
|
1469 |
+
w_fp = w_fp.group("FP")
|
1470 |
+
w_fp = float(w_fp)
|
1471 |
+
weights[error_type]["FP"] = w_fp
|
1472 |
+
except ValueError:
|
1473 |
+
print("WARNING: Weight for FP for error type {0} is not a number. Set to 0.".format(error_type))
|
1474 |
+
weights[error_type]["FP"] = 0
|
1475 |
+
|
1476 |
+
#Match weight for FP
|
1477 |
+
w_fn = re.search(r"(?P<FN>\d*\.?\d+)\s*\*?\s*FN", f)
|
1478 |
+
if w_fn == None:
|
1479 |
+
print("WARNING: Missing weight for FN for error type {0}. Set to 0.".format(error_type))
|
1480 |
+
weights[error_type]["FN"] = 0
|
1481 |
+
else:
|
1482 |
+
try:
|
1483 |
+
w_fn = w_fn.group("FN")
|
1484 |
+
w_fn = float(w_fn)
|
1485 |
+
weights[error_type]["FN"] = w_fn
|
1486 |
+
except ValueError:
|
1487 |
+
print("WARNING: Weight for FN for error type {0} is not a number. Set to 0.".format(error_type))
|
1488 |
+
weights[error_type]["FN"] = 0
|
1489 |
+
if weights:
|
1490 |
+
#Add default weights for traditional categories if needed
|
1491 |
+
if not "TP" in weights:
|
1492 |
+
weights["TP"] = {"TP" : 1}
|
1493 |
+
if not "FP" in weights:
|
1494 |
+
weights["FP"] = {"FP" : 1}
|
1495 |
+
if not "FN" in weights:
|
1496 |
+
weights["FN"] = {"FN" : 1}
|
1497 |
+
return key, weights
|
1498 |
+
else:
|
1499 |
+
print("WARNING: No valid weights found. Using default weights.")
|
1500 |
+
return key, {"TP" : {"TP" : 1},
|
1501 |
+
"FP" : {"FP" : 1},
|
1502 |
+
"FN" : {"FN" : 1},
|
1503 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1504 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1505 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
1506 |
+
|
1507 |
+
elif key == "eval_method":
|
1508 |
+
available_methods = ["traditional", "fair", "weighted"]
|
1509 |
+
if val == "all":
|
1510 |
+
return key, available_methods
|
1511 |
+
else:
|
1512 |
+
methods = []
|
1513 |
+
for m in available_methods:
|
1514 |
+
if m in [v.strip() for v in val.split(",")
|
1515 |
+
if v.strip() and v.strip().lower() in available_methods]:
|
1516 |
+
methods.append(m)
|
1517 |
+
if methods:
|
1518 |
+
return key, methods
|
1519 |
+
else:
|
1520 |
+
print("WARNING: No evaluation method specified. Applying all methods.")
|
1521 |
+
return key, available_methods
|
1522 |
+
|
1523 |
+
#############################
|
1524 |
+
|
1525 |
+
config = dict()
|
1526 |
+
|
1527 |
+
f = open(config_file, mode="r", encoding="utf-8")
|
1528 |
+
|
1529 |
+
for line in f:
|
1530 |
+
|
1531 |
+
line = line.strip()
|
1532 |
+
|
1533 |
+
#Skip empty lines and comments
|
1534 |
+
if not line or line.startswith("#"):
|
1535 |
+
continue
|
1536 |
+
|
1537 |
+
line = line.split("=")
|
1538 |
+
key = line[0].strip()
|
1539 |
+
val = "=".join(line[1:]).strip()
|
1540 |
+
|
1541 |
+
#Store original paths of input files
|
1542 |
+
if key in ["target_in", "system_in"]:
|
1543 |
+
print("{0}: {1}".format(key, val))
|
1544 |
+
config[key] = val
|
1545 |
+
|
1546 |
+
#Parse config
|
1547 |
+
key, val = _parse_config(key, val)
|
1548 |
+
|
1549 |
+
#Skip illegal configs
|
1550 |
+
if key is None or val is None:
|
1551 |
+
continue
|
1552 |
+
|
1553 |
+
#Warn before overwriting duplicate config items.
|
1554 |
+
if key in config:
|
1555 |
+
print("WARNING: duplicate config item '{0}' found.".format(key))
|
1556 |
+
|
1557 |
+
config[key] = val
|
1558 |
+
|
1559 |
+
f.close()
|
1560 |
+
|
1561 |
+
#Stop evaluation if either target or system files are missing
|
1562 |
+
if not "target_files" in config or not "system_files" in config:
|
1563 |
+
print("ERROR: Cannot evaluate without target AND system file(s). Quitting.")
|
1564 |
+
return None
|
1565 |
+
|
1566 |
+
#Output to sys.stdout if no evaluation file is specified
|
1567 |
+
elif config.get("eval_out", None) == None:
|
1568 |
+
config["eval_out"] = sys.stdout
|
1569 |
+
#Otherwise open eval file
|
1570 |
+
else:
|
1571 |
+
config["eval_out"] = open(config.get("eval_out"), mode="w", encoding="utf-8")
|
1572 |
+
|
1573 |
+
#Set labels to 'all' if no specific labels are given
|
1574 |
+
if config.get("labels", None) == None:
|
1575 |
+
config["labels"] = ["all"]
|
1576 |
+
|
1577 |
+
if config.get("eval_method", None) == None:
|
1578 |
+
config["eval_method"] = ["traditional", "fair", "weighted"]
|
1579 |
+
if not config.get("weights", {}) and "weighted" in config.get("eval_method"):
|
1580 |
+
if not "fair" in config["eval_method"]:
|
1581 |
+
config["eval_method"].append("fair")
|
1582 |
+
del config["eval_method"][config["eval_method"].index("weighted")]
|
1583 |
+
|
1584 |
+
#Output settings at the top of evaluation file
|
1585 |
+
print("### Evaluation settings:", file=config.get("eval_out"))
|
1586 |
+
for key in sorted(config.keys()):
|
1587 |
+
if key in ["target_files", "system_files", "eval_out"]:
|
1588 |
+
continue
|
1589 |
+
print("{0}: {1}".format(key, config.get(key)), file=config.get("eval_out"))
|
1590 |
+
print(file=config.get("eval_out"))
|
1591 |
+
|
1592 |
+
return config
|
1593 |
+
|
1594 |
+
###########################
|
1595 |
+
|
1596 |
+
if __name__ == '__main__':
|
1597 |
+
parser = argparse.ArgumentParser()
|
1598 |
+
parser.add_argument('--config', help='Configuration File', required=True)
|
1599 |
+
|
1600 |
+
args = parser.parse_args()
|
1601 |
+
|
1602 |
+
#Read config file into dict
|
1603 |
+
config = read_config(args.config)
|
1604 |
+
|
1605 |
+
#Create empty eval dict
|
1606 |
+
eval_dict = {"overall" : {"traditional" : {}, "fair" : {}},
|
1607 |
+
"per_label" : {"traditional" : {}, "fair" : {}},
|
1608 |
+
"conf" : {}}
|
1609 |
+
for method in config.get("eval_method", ["traditional", "fair"]):
|
1610 |
+
eval_dict["overall"][method] = {}
|
1611 |
+
eval_dict["per_label"][method] = {}
|
1612 |
+
|
1613 |
+
#Create dict to count target annotations
|
1614 |
+
config["data_stats"] = {}
|
1615 |
+
|
1616 |
+
#Get system and target files to compare
|
1617 |
+
#The files must have the same name to be compared
|
1618 |
+
file_pairs = []
|
1619 |
+
for t in config.get("target_files", []):
|
1620 |
+
s = [f for f in config.get("system_files", [])
|
1621 |
+
if os.path.split(t)[-1] == os.path.split(f)[-1]]
|
1622 |
+
if s:
|
1623 |
+
file_pairs.append((t, s[0]))
|
1624 |
+
|
1625 |
+
#Go through target and system files in parallel
|
1626 |
+
for target_file, system_file in file_pairs:
|
1627 |
+
|
1628 |
+
#For each sentence pair
|
1629 |
+
for target_sentence, system_sentence in zip(get_sentences(target_file),
|
1630 |
+
get_sentences(system_file)):
|
1631 |
+
|
1632 |
+
#Get spans
|
1633 |
+
target_spans = get_spans(target_sentence, **config)
|
1634 |
+
system_spans = get_spans(system_sentence, **config)
|
1635 |
+
|
1636 |
+
#Count target annotations for simple statistics.
|
1637 |
+
#Result is stored in data_stats key of config dict.
|
1638 |
+
annotation_stats(target_spans, **config)
|
1639 |
+
|
1640 |
+
#Evaluate spans
|
1641 |
+
sent_counts = compare_spans(target_spans, system_spans,
|
1642 |
+
config.get("focus", "target"))
|
1643 |
+
|
1644 |
+
#Add results to eval dict
|
1645 |
+
eval_dict = add_dict(eval_dict, sent_counts)
|
1646 |
+
|
1647 |
+
#Calculate overall results
|
1648 |
+
eval_dict = calculate_results(eval_dict, **config)
|
1649 |
+
|
1650 |
+
#Output results
|
1651 |
+
output_results(eval_dict, **config)
|
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: FairEvaluation
|
3 |
+
tags:
|
4 |
+
- evaluate
|
5 |
+
- metric
|
6 |
+
description: "TODO: add a description here"
|
7 |
+
sdk: gradio
|
8 |
+
sdk_version: 3.0.2
|
9 |
+
app_file: app.py
|
10 |
+
pinned: false
|
11 |
+
---
|
12 |
+
|
13 |
+
# Metric: Fair Evaluation
|
14 |
+
|
15 |
+
## Metric Description
|
16 |
+
The traditional evaluation of NLP labeled spans with precision, recall, and F1-score leads to double penalties for
|
17 |
+
close-to-correct annotations. As Manning (2006) argues in an article about named entity recognition, this can lead to
|
18 |
+
undesirable effects when systems are optimized for these traditional metrics.
|
19 |
+
|
20 |
+
Building on his ideas, Katrin Ortmann (2022) develops FairEval: a new evaluation method that more accurately reflects
|
21 |
+
true annotation quality by ensuring that every error is counted only once. In addition to the traditional categories of
|
22 |
+
true positives (TP), false positives (FP), and false negatives (FN), the new method takes into account the more
|
23 |
+
fine-grained error types suggested by Manning: labeling errors (LE), boundary errors (BE), and labeling-boundary
|
24 |
+
errors (LBE). Additionally, the system also distinguishes different types of boundary errors:
|
25 |
+
- BES: the system's annotation is smaller than the target span
|
26 |
+
- BEL: the system's annotation is larger than the target span
|
27 |
+
- BEO: the system span overlaps with the target span
|
28 |
+
|
29 |
+
For more information on the reasoning and computation of the fair metrics from the redefined error count pleas refer to the [original paper](https://aclanthology.org/2022.lrec-1.150.pdf).
|
30 |
+
|
31 |
+
## How to Use
|
32 |
+
The current HuggingFace implementation accepts input for the predictions and references as sentences in IOB format.
|
33 |
+
The simplest use example would be:
|
34 |
+
|
35 |
+
```python
|
36 |
+
>>> faireval = evaluate.load("illorca/fairevaluation")
|
37 |
+
>>> pred = ['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
38 |
+
>>> ref = ['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
39 |
+
>>> results = faireval.compute(predictions=pred, references=ref)
|
40 |
+
```
|
41 |
+
|
42 |
+
### Inputs
|
43 |
+
- **predictions** *(list)*: list of predictions to score. Each predicted sentence
|
44 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
45 |
+
Predicted sentences must have the same number of tokens as the references'.
|
46 |
+
- **references** *(list)*: list of reference for each prediction. Each reference sentence
|
47 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
48 |
+
|
49 |
+
### Output Values
|
50 |
+
A dictionary with:
|
51 |
+
- TP: count of True Positives
|
52 |
+
- FP: count of False Positives
|
53 |
+
- FN: count of False Negatives
|
54 |
+
- LE: count of Labeling Errors
|
55 |
+
- BE: count of Boundary Errors
|
56 |
+
- BEO: segment of the BE where the prediction overlaps with the reference
|
57 |
+
- BES: segment of the BE where the prediction is smaller than the reference
|
58 |
+
- BEL: segment of the BE where the prediction is larger than the reference
|
59 |
+
- LBE : count of Label-and-Boundary Errors
|
60 |
+
- Prec: fair precision
|
61 |
+
- Rec: fair recall
|
62 |
+
- F1: fair F1-score
|
63 |
+
|
64 |
+
#### Values from Popular Papers
|
65 |
+
*Examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
66 |
+
|
67 |
+
*Under construction*
|
68 |
+
|
69 |
+
### Examples
|
70 |
+
*Code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
71 |
+
|
72 |
+
*Under construction*
|
73 |
+
|
74 |
+
## Limitations and Bias
|
75 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
76 |
+
|
77 |
+
*Under construction*
|
78 |
+
|
79 |
+
## Citation
|
80 |
+
Ortmann, Katrin. 2022. Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans. In *Proceedings of the Language Resources and Evaluation Conference (LREC)*, Marseille, France, pages 1400–1407. [PDF](https://aclanthology.org/2022.lrec-1.150.pdf)
|
81 |
+
|
82 |
+
```bibtex
|
83 |
+
@inproceedings{ortmann2022,
|
84 |
+
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
|
85 |
+
author = {Katrin Ortmann},
|
86 |
+
url = {https://aclanthology.org/2022.lrec-1.150},
|
87 |
+
year = {2022},
|
88 |
+
date = {2022-06-21},
|
89 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
|
90 |
+
pages = {1400-1407},
|
91 |
+
publisher = {European Language Resources Association},
|
92 |
+
address = {Marseille, France},
|
93 |
+
pubstate = {published},
|
94 |
+
type = {inproceedings}
|
95 |
+
}
|
96 |
+
```
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("illorca/fairevaluation")
|
6 |
+
launch_gradio_widget(module)
|
fairevaluation.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# huggingface packages
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
# faireval functions
|
20 |
+
from .FairEval import *
|
21 |
+
|
22 |
+
# packages to manage input formats
|
23 |
+
import importlib
|
24 |
+
from typing import List, Optional, Union
|
25 |
+
from seqeval.metrics.v1 import check_consistent_length
|
26 |
+
from seqeval.scheme import Entities, Token, auto_detect
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{ortmann2022,
|
30 |
+
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
|
31 |
+
author = {Katrin Ortmann},
|
32 |
+
url = {https://aclanthology.org/2022.lrec-1.150},
|
33 |
+
year = {2022},
|
34 |
+
date = {2022-06-21},
|
35 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
|
36 |
+
pages = {1400-1407},
|
37 |
+
publisher = {European Language Resources Association},
|
38 |
+
address = {Marseille, France},
|
39 |
+
pubstate = {published},
|
40 |
+
type = {inproceedings}
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
New evaluation method that more accurately reflects true annotation quality by ensuring that every error is counted
|
46 |
+
only once - avoiding the penalty to close-to-target annotations happening in traditional evaluation.
|
47 |
+
In addition to the traditional categories of true positives (TP), false positives (FP), and false negatives
|
48 |
+
(FN), the new method takes into account the more fine-grained error types suggested by Manning: labeling errors (LE),
|
49 |
+
boundary errors (BE), and labeling-boundary errors (LBE). Additionally, the system also distinguishes different types
|
50 |
+
of boundary errors: BES (the system's annotation is smaller than the target span), BEL (the system's annotation is
|
51 |
+
larger than the target span) and BEO (the system span overlaps with the target span)
|
52 |
+
"""
|
53 |
+
|
54 |
+
_KWARGS_DESCRIPTION = """
|
55 |
+
Counts the number of redefined traditional errors (FP, FN), newly defined errors (BE, LE, LBE) and fine-grained
|
56 |
+
boundary errors (BES, BEL, BEO). Then computes the fair Precision, Recall and F1-Score.
|
57 |
+
For the computation of the metrics from the error count please refer to: https://aclanthology.org/2022.lrec-1.150.pdf
|
58 |
+
Args:
|
59 |
+
predictions: list of predictions to score. Each predicted sentence
|
60 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
61 |
+
Predicted sentences must have the same number of tokens as the references'.
|
62 |
+
references: list of reference for each prediction. Each reference sentence
|
63 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
64 |
+
Returns:
|
65 |
+
A dictionary with:
|
66 |
+
TP: count of True Positives
|
67 |
+
FP: count of False Positives
|
68 |
+
FN: count of False Negatives
|
69 |
+
LE: count of Labeling Errors
|
70 |
+
BE: count of Boundary Errors
|
71 |
+
BEO: segment of the BE where the prediction overlaps with the reference
|
72 |
+
BES: segment of the BE where the prediction is smaller than the reference
|
73 |
+
BEL: segment of the BE where the prediction is larger than the reference
|
74 |
+
LBE : count of Label-and-Boundary Errors
|
75 |
+
Prec: fair precision
|
76 |
+
Rec: fair recall
|
77 |
+
F1: fair F1-score
|
78 |
+
Examples:
|
79 |
+
>>> faireval = evaluate.load("illorca/fairevaluation")
|
80 |
+
>>> pred = ['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
81 |
+
>>> ref = ['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
82 |
+
>>> results = faireval.compute(predictions=pred, references=ref)
|
83 |
+
>>> print(results)
|
84 |
+
{'TP': 1,
|
85 |
+
'FP': 0,
|
86 |
+
'FN': 0,
|
87 |
+
'LE': 0,
|
88 |
+
'BE': 1,
|
89 |
+
'BEO': 0,
|
90 |
+
'BES': 0,
|
91 |
+
'BEL': 1,
|
92 |
+
'LBE': 0,
|
93 |
+
'Prec': 0.6666666666666666,
|
94 |
+
'Rec': 0.6666666666666666,
|
95 |
+
'F1': 0.6666666666666666}
|
96 |
+
"""
|
97 |
+
|
98 |
+
|
99 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
100 |
+
class FairEvaluation(evaluate.Metric):
|
101 |
+
"""Counts the number of redefined traditional errors (FP, FN), newly defined errors (BE, LE, LBE) and fine-grained
|
102 |
+
boundary errors (BES, BEL, BEO). Then computes the fair Precision, Recall and F1-Score. """
|
103 |
+
|
104 |
+
def _info(self):
|
105 |
+
return evaluate.MetricInfo(
|
106 |
+
# This is the description that will appear on the modules page.
|
107 |
+
module_type="metric",
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
citation=_CITATION,
|
110 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
111 |
+
# This defines the format of each prediction and reference
|
112 |
+
features=datasets.Features({
|
113 |
+
"predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
114 |
+
"references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
115 |
+
}),
|
116 |
+
# Homepage of the module for documentation
|
117 |
+
homepage="https://huggingface.co/spaces/illorca/fairevaluation",
|
118 |
+
# Additional links to the codebase or references
|
119 |
+
codebase_urls=["https://github.com/rubcompling/FairEval#acknowledgement"],
|
120 |
+
reference_urls=["https://aclanthology.org/2022.lrec-1.150.pdf"]
|
121 |
+
)
|
122 |
+
|
123 |
+
def _compute(
|
124 |
+
self,
|
125 |
+
predictions,
|
126 |
+
references,
|
127 |
+
suffix: bool = False,
|
128 |
+
scheme: Optional[str] = None,
|
129 |
+
mode: Optional[str] = 'fair',
|
130 |
+
error_format: Optional[str] = 'count',
|
131 |
+
sample_weight: Optional[List[int]] = None,
|
132 |
+
zero_division: Union[str, int] = "warn",
|
133 |
+
):
|
134 |
+
"""Returns the error counts and fair scores"""
|
135 |
+
# (1) SEQEVAL INPUT MANAGEMENT
|
136 |
+
if scheme is not None:
|
137 |
+
try:
|
138 |
+
scheme_module = importlib.import_module("seqeval.scheme")
|
139 |
+
scheme = getattr(scheme_module, scheme)
|
140 |
+
except AttributeError:
|
141 |
+
raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}")
|
142 |
+
|
143 |
+
y_true = references
|
144 |
+
y_pred = predictions
|
145 |
+
|
146 |
+
check_consistent_length(y_true, y_pred)
|
147 |
+
|
148 |
+
if scheme is None or not issubclass(scheme, Token):
|
149 |
+
scheme = auto_detect(y_true, suffix)
|
150 |
+
|
151 |
+
true_spans = Entities(y_true, scheme, suffix).entities
|
152 |
+
pred_spans = Entities(y_pred, scheme, suffix).entities
|
153 |
+
|
154 |
+
# (2) TRANSFORM FROM SEQEVAL TO FAIREVAL SPAN FORMAT
|
155 |
+
true_spans = seq_to_fair(true_spans)
|
156 |
+
pred_spans = seq_to_fair(pred_spans)
|
157 |
+
|
158 |
+
# (3) COUNT ERRORS AND CALCULATE SCORES
|
159 |
+
total_errors = compare_spans([], []) # initialize empty error count dictionary
|
160 |
+
|
161 |
+
for i in range(len(true_spans)):
|
162 |
+
sentence_errors = compare_spans(true_spans[i], pred_spans[i])
|
163 |
+
total_errors = add_dict(total_errors, sentence_errors)
|
164 |
+
|
165 |
+
results = calculate_results(total_errors)
|
166 |
+
del results['conf']
|
167 |
+
|
168 |
+
# (4) SELECT OUTPUT MODE AND REFORMAT AS SEQEVAL HUGGINGFACE OUTPUT
|
169 |
+
output = {}
|
170 |
+
total_trad_errors = results['overall']['traditional']['FP'] + results['overall']['traditional']['FN']
|
171 |
+
total_fair_errors = results['overall']['fair']['FP'] + results['overall']['fair']['FN'] + \
|
172 |
+
results['overall']['fair']['LE'] + results['overall']['fair']['BE'] + \
|
173 |
+
results['overall']['fair']['LBE']
|
174 |
+
|
175 |
+
assert mode in ['traditional', 'fair'], 'mode must be \'traditional\' or \'fair\''
|
176 |
+
assert error_format in ['count', 'proportion'], 'error_format must be \'count\' or \'proportion\''
|
177 |
+
|
178 |
+
if mode == 'traditional':
|
179 |
+
for k, v in results['per_label'][mode].items():
|
180 |
+
if error_format == 'count':
|
181 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
182 |
+
'FP': v['FP'], 'FN': v['FN']}
|
183 |
+
elif error_format == 'proportion':
|
184 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
185 |
+
'FP': v['FP'] / total_trad_errors, 'FN': v['FN'] / total_trad_errors}
|
186 |
+
elif mode == 'fair':
|
187 |
+
for k, v in results['per_label'][mode].items():
|
188 |
+
if error_format == 'count':
|
189 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
190 |
+
'FP': v['FP'], 'FN': v['FN'], 'LE': v['LE'], 'BE': v['BE'], 'LBE': v['LBE']}
|
191 |
+
elif error_format == 'proportion':
|
192 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
193 |
+
'FP': v['FP'] / total_fair_errors, 'FN': v['FN'] / total_fair_errors,
|
194 |
+
'LE': v['LE'] / total_fair_errors, 'BE': v['BE'] / total_fair_errors,
|
195 |
+
'LBE': v['LBE'] / total_fair_errors}
|
196 |
+
|
197 |
+
output['overall_precision'] = results['overall'][mode]['Prec']
|
198 |
+
output['overall_recall'] = results['overall'][mode]['Rec']
|
199 |
+
output['overall_f1'] = results['overall'][mode]['F1']
|
200 |
+
|
201 |
+
if mode == 'traditional':
|
202 |
+
output['TP'] = results['overall'][mode]['TP']
|
203 |
+
output['FP'] = results['overall'][mode]['FP']
|
204 |
+
output['FN'] = results['overall'][mode]['FN']
|
205 |
+
if error_format == 'proportion':
|
206 |
+
output['FP'] = output['FP'] / total_trad_errors
|
207 |
+
output['FN'] = output['FN'] / total_trad_errors
|
208 |
+
elif mode == 'fair':
|
209 |
+
output['TP'] = results['overall'][mode]['TP']
|
210 |
+
output['FP'] = results['overall'][mode]['FP']
|
211 |
+
output['FN'] = results['overall'][mode]['FN']
|
212 |
+
output['LE'] = results['overall'][mode]['LE']
|
213 |
+
output['BE'] = results['overall'][mode]['BE']
|
214 |
+
output['LBE'] = results['overall'][mode]['LBE']
|
215 |
+
if error_format == 'proportion':
|
216 |
+
output['FP'] = output['FP'] / total_fair_errors
|
217 |
+
output['FN'] = output['FN'] / total_fair_errors
|
218 |
+
output['LE'] = output['LE'] / total_fair_errors
|
219 |
+
output['BE'] = output['BE'] / total_fair_errors
|
220 |
+
output['LBE'] = output['LBE'] / total_fair_errors
|
221 |
+
|
222 |
+
return output
|
223 |
+
|
224 |
+
|
225 |
+
def seq_to_fair(seq_sentences):
|
226 |
+
out = []
|
227 |
+
for seq_sentence in seq_sentences:
|
228 |
+
sentence = []
|
229 |
+
for entity in seq_sentence:
|
230 |
+
span = str(entity).replace('(', '').replace(')', '').replace(' ', '').split(',')
|
231 |
+
span = span[1:]
|
232 |
+
span[-1] = int(span[-1]) - 1
|
233 |
+
span[1] = int(span[1])
|
234 |
+
span.append({i for i in range(span[1], span[2] + 1)})
|
235 |
+
sentence.append(span)
|
236 |
+
out.append(sentence)
|
237 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
|
3 |
+
seqeval
|