illorca commited on
Commit
f17dee3
·
1 Parent(s): 05bd27c

Update docs

Browse files
.ipynb_checkpoints/FairEval-checkpoint.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # huggingface packages
16
+ import evaluate
17
+ import datasets
18
+
19
+ # faireval functions
20
+ from .FairEvalUtils import *
21
+
22
+ # packages to manage input formats
23
+ import importlib
24
+ from typing import List, Optional, Union
25
+ from seqeval.metrics.v1 import check_consistent_length
26
+ from seqeval.scheme import Entities, Token, auto_detect
27
+
28
+ _CITATION = """\
29
+ @inproceedings{ortmann2022,
30
+ title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
31
+ author = {Katrin Ortmann},
32
+ url = {https://aclanthology.org/2022.lrec-1.150},
33
+ year = {2022},
34
+ date = {2022-06-21},
35
+ booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
36
+ pages = {1400-1407},
37
+ publisher = {European Language Resources Association},
38
+ address = {Marseille, France},
39
+ pubstate = {published},
40
+ type = {inproceedings}
41
+ }
42
+ """
43
+
44
+ _DESCRIPTION = """\
45
+ New evaluation method that more accurately reflects true annotation quality by ensuring that every error is counted
46
+ only once - avoiding the penalty to close-to-target annotations happening in traditional evaluation.
47
+ In addition to the traditional categories of true positives (TP), false positives (FP), and false negatives
48
+ (FN), the new method takes into account more fine-grained error types: labeling errors (LE), boundary errors (BE),
49
+ and labeling-boundary errors (LBE).
50
+ """
51
+
52
+ _KWARGS_DESCRIPTION = """
53
+ Outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
54
+ spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
55
+ switching the argument 'mode'.
56
+ For the computation of the fair metrics from the error count please refer to: https://aclanthology.org/2022.lrec-1.150.pdf
57
+ Args:
58
+ predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
59
+ references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
60
+ mode: 'fair' or 'traditional'. Controls the desired output. 'Traditional' is equivalent to seqeval's metrics. The default value is 'fair'.
61
+ error_format: 'count' or 'proportion'. Controls the desired output for TP, FP, BE, LE, etc. 'count' gives the absolute count per parameter. 'proportion' gives the precentage with respect to the total errors that each parameter represents. Default value is 'count'.
62
+ zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
63
+ suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
64
+ scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
65
+ Returns:
66
+ A dictionary with:
67
+ - Overall error parameter count (or ratio) and resulting scores.
68
+ - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
69
+
70
+ If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair', TP remain the same,
71
+ FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
72
+
73
+ Examples:
74
+ >>> faireval = evaluate.load("hpi-dhc/FairEval")
75
+ >>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
76
+ >>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
77
+ >>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count)
78
+ >>> print(results)
79
+ {'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
80
+ 'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
81
+ 'overall_precision': 0.6666666666666666,
82
+ 'overall_recall': 0.6666666666666666,
83
+ 'overall_f1': 0.6666666666666666,
84
+ 'TP': 1,
85
+ 'FP': 0,
86
+ 'FN': 0,
87
+ 'LE': 0,
88
+ 'BE': 1,
89
+ 'LBE': 0}
90
+ """
91
+
92
+
93
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
94
+ class FairEvaluation(evaluate.Metric):
95
+
96
+ def _info(self):
97
+ return evaluate.MetricInfo(
98
+ # This is the description that will appear on the modules page.
99
+ module_type="metric",
100
+ description=_DESCRIPTION,
101
+ citation=_CITATION,
102
+ inputs_description=_KWARGS_DESCRIPTION,
103
+ # This defines the format of each prediction and reference
104
+ features=datasets.Features({
105
+ "predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
106
+ "references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
107
+ }),
108
+ # Homepage of the module for documentation
109
+ homepage="https://huggingface.co/spaces/illorca/fairevaluation",
110
+ # Additional links to the codebase or references
111
+ codebase_urls=["https://github.com/rubcompling/FairEval#acknowledgement"],
112
+ reference_urls=["https://aclanthology.org/2022.lrec-1.150.pdf"]
113
+ )
114
+
115
+ def _compute(
116
+ self,
117
+ predictions,
118
+ references,
119
+ suffix: bool = False,
120
+ scheme: Optional[str] = None,
121
+ mode: Optional[str] = 'fair',
122
+ error_format: Optional[str] = 'count',
123
+ zero_division: Union[str, int] = "warn",
124
+ ):
125
+ """Returns the error parameter counts and scores"""
126
+ # (1) SEQEVAL INPUT MANAGEMENT
127
+ if scheme is not None:
128
+ try:
129
+ scheme_module = importlib.import_module("seqeval.scheme")
130
+ scheme = getattr(scheme_module, scheme)
131
+ except AttributeError:
132
+ raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}")
133
+
134
+ y_true = references
135
+ y_pred = predictions
136
+
137
+ check_consistent_length(y_true, y_pred)
138
+
139
+ if scheme is None or not issubclass(scheme, Token):
140
+ scheme = auto_detect(y_true, suffix)
141
+
142
+ true_spans = Entities(y_true, scheme, suffix).entities
143
+ pred_spans = Entities(y_pred, scheme, suffix).entities
144
+
145
+ # (2) TRANSFORM FROM SEQEVAL TO FAIREVAL SPAN FORMAT
146
+ true_spans = seq_to_fair(true_spans)
147
+ pred_spans = seq_to_fair(pred_spans)
148
+
149
+ # (3) COUNT ERRORS AND CALCULATE SCORES
150
+ total_errors = compare_spans([], []) # initialize empty error count dictionary
151
+
152
+ for i in range(len(true_spans)):
153
+ sentence_errors = compare_spans(true_spans[i], pred_spans[i])
154
+ total_errors = add_dict(total_errors, sentence_errors)
155
+
156
+ results = calculate_results(total_errors)
157
+ del results['conf']
158
+
159
+ # (4) SELECT OUTPUT MODE AND REFORMAT AS SEQEVAL HUGGINGFACE OUTPUT
160
+ output = {}
161
+ total_trad_errors = results['overall']['traditional']['FP'] + results['overall']['traditional']['FN']
162
+ total_fair_errors = results['overall']['fair']['FP'] + results['overall']['fair']['FN'] + \
163
+ results['overall']['fair']['LE'] + results['overall']['fair']['BE'] + \
164
+ results['overall']['fair']['LBE']
165
+
166
+ assert mode in ['traditional', 'fair'], 'mode must be \'traditional\' or \'fair\''
167
+ assert error_format in ['count', 'proportion'], 'error_format must be \'count\' or \'proportion\''
168
+
169
+ if mode == 'traditional':
170
+ for k, v in results['per_label'][mode].items():
171
+ if error_format == 'count':
172
+ output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
173
+ 'FP': v['FP'], 'FN': v['FN']}
174
+ elif error_format == 'proportion':
175
+ output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
176
+ 'FP': v['FP'] / total_trad_errors, 'FN': v['FN'] / total_trad_errors}
177
+ elif mode == 'fair':
178
+ for k, v in results['per_label'][mode].items():
179
+ if error_format == 'count':
180
+ output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
181
+ 'FP': v['FP'], 'FN': v['FN'], 'LE': v['LE'], 'BE': v['BE'], 'LBE': v['LBE']}
182
+ elif error_format == 'proportion':
183
+ output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
184
+ 'FP': v['FP'] / total_fair_errors, 'FN': v['FN'] / total_fair_errors,
185
+ 'LE': v['LE'] / total_fair_errors, 'BE': v['BE'] / total_fair_errors,
186
+ 'LBE': v['LBE'] / total_fair_errors}
187
+
188
+ output['overall_precision'] = results['overall'][mode]['Prec']
189
+ output['overall_recall'] = results['overall'][mode]['Rec']
190
+ output['overall_f1'] = results['overall'][mode]['F1']
191
+
192
+ if mode == 'traditional':
193
+ output['TP'] = results['overall'][mode]['TP']
194
+ output['FP'] = results['overall'][mode]['FP']
195
+ output['FN'] = results['overall'][mode]['FN']
196
+ if error_format == 'proportion':
197
+ output['FP'] = output['FP'] / total_trad_errors
198
+ output['FN'] = output['FN'] / total_trad_errors
199
+ elif mode == 'fair':
200
+ output['TP'] = results['overall'][mode]['TP']
201
+ output['FP'] = results['overall'][mode]['FP']
202
+ output['FN'] = results['overall'][mode]['FN']
203
+ output['LE'] = results['overall'][mode]['LE']
204
+ output['BE'] = results['overall'][mode]['BE']
205
+ output['LBE'] = results['overall'][mode]['LBE']
206
+ if error_format == 'proportion':
207
+ output['FP'] = output['FP'] / total_fair_errors
208
+ output['FN'] = output['FN'] / total_fair_errors
209
+ output['LE'] = output['LE'] / total_fair_errors
210
+ output['BE'] = output['BE'] / total_fair_errors
211
+ output['LBE'] = output['LBE'] / total_fair_errors
212
+
213
+ return output
214
+
215
+
216
+ def seq_to_fair(seq_sentences):
217
+ "Transforms input anotated sentences from seqeval span format to FairEval span format"
218
+ out = []
219
+ for seq_sentence in seq_sentences:
220
+ sentence = []
221
+ for entity in seq_sentence:
222
+ span = str(entity).replace('(', '').replace(')', '').replace(' ', '').split(',')
223
+ span = span[1:]
224
+ span[-1] = int(span[-1]) - 1
225
+ span[1] = int(span[1])
226
+ span.append({i for i in range(span[1], span[2] + 1)})
227
+ sentence.append(span)
228
+ out.append(sentence)
229
+ return out
.ipynb_checkpoints/FairEvalUtils-checkpoint.py ADDED
@@ -0,0 +1,1651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ '''
4
+ Created 09/2021
5
+
6
+ @author: Katrin Ortmann
7
+ '''
8
+
9
+ import argparse
10
+ import os
11
+ import sys
12
+ import re
13
+ from typing import Iterable
14
+ from io import TextIOWrapper
15
+ from copy import deepcopy
16
+
17
+ #####################################
18
+
19
+ def precision(evaldict, version="traditional", weights={}):
20
+ """
21
+ Calculate traditional, fair or weighted precision value.
22
+
23
+ Precision is calculated as the number of true positives
24
+ divided by the number of true positives plus false positives
25
+ plus (optionally) additional error types.
26
+
27
+ Input:
28
+ - A dictionary with error types as keys and counts as values, e.g.,
29
+ {"TP" : 10, "FP" : 2, "LE" : 1, ...}
30
+
31
+ For 'traditional' evaluation, true positives (key: TP) and
32
+ false positives (key: FP) are required.
33
+ The 'fair' evaluation is based on true positives (TP),
34
+ false positives (FP), labeling errors (LE), boundary errors (BE)
35
+ and labeling-boundary errors (LBE).
36
+ The 'weighted' evaluation can include any error type
37
+ that is given as key in the weight dictionary.
38
+ For missing keys, the count is set to 0.
39
+
40
+ - The desired evaluation method. Options are 'traditional',
41
+ 'fair', and 'weighted'. If no weight dictionary is specified,
42
+ 'weighted' is identical to 'fair'.
43
+
44
+ - A weight dictionary to specify how much an error type should
45
+ count as one of the traditional error types (or as true positive).
46
+ Per default, every traditional error is counted as one error (or true positive)
47
+ and each error of the additional types is counted as half false positive and half false negative:
48
+
49
+ {"TP" : {"TP" : 1},
50
+ "FP" : {"FP" : 1},
51
+ "FN" : {"FN" : 1},
52
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
53
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
54
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
55
+
56
+ Other suggested weights to count boundary errors as half true positives:
57
+
58
+ {"TP" : {"TP" : 1},
59
+ "FP" : {"FP" : 1},
60
+ "FN" : {"FN" : 1},
61
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
62
+ "BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
63
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
64
+
65
+ Or to include different types of boundary errors:
66
+
67
+ {"TP" : {"TP" : 1},
68
+ "FP" : {"FP" : 1},
69
+ "FN" : {"FN" : 1},
70
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
71
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
72
+ "BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
73
+ "BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
74
+ "BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
75
+
76
+ Output:
77
+ The precision for the given input values.
78
+ In case of a ZeroDivisionError, the precision is set to 0.
79
+
80
+ """
81
+ traditional_weights = {
82
+ "TP" : {"TP" : 1},
83
+ "FP" : {"FP" : 1},
84
+ "FN" : {"FN" : 1}
85
+ }
86
+ default_fair_weights = {
87
+ "TP" : {"TP" : 1},
88
+ "FP" : {"FP" : 1},
89
+ "FN" : {"FN" : 1},
90
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
91
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
92
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
93
+ }
94
+ try:
95
+ tp = 0
96
+ fp = 0
97
+
98
+ #Set default weights for traditional evaluation
99
+ if version == "traditional":
100
+ weights = traditional_weights
101
+
102
+ #Set weights to default
103
+ #for fair evaluation or if no weights are given
104
+ elif version == "fair" or not weights:
105
+ weights = default_fair_weights
106
+
107
+ #Add weighted errors to true positive count
108
+ tp += sum(
109
+ [w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
110
+ )
111
+
112
+ #Add weighted errors to false positive count
113
+ fp += sum(
114
+ [w.get("FP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
115
+ )
116
+
117
+ #Calculate precision
118
+ return tp / (tp + fp)
119
+
120
+ #Output 0 if there is neither true nor false positives
121
+ except ZeroDivisionError:
122
+ return 0.0
123
+
124
+ ######################
125
+
126
+ def recall(evaldict, version="traditional", weights={}):
127
+ """
128
+ Calculate traditional, fair or weighted recall value.
129
+
130
+ Recall is calculated as the number of true positives
131
+ divided by the number of true positives plus false negatives
132
+ plus (optionally) additional error types.
133
+
134
+ Input:
135
+ - A dictionary with error types as keys and counts as values, e.g.,
136
+ {"TP" : 10, "FN" : 2, "LE" : 1, ...}
137
+
138
+ For 'traditional' evaluation, true positives (key: TP) and
139
+ false negatives (key: FN) are required.
140
+ The 'fair' evaluation is based on true positives (TP),
141
+ false negatives (FN), labeling errors (LE), boundary errors (BE)
142
+ and labeling-boundary errors (LBE).
143
+ The 'weighted' evaluation can include any error type
144
+ that is given as key in the weight dictionary.
145
+ For missing keys, the count is set to 0.
146
+
147
+ - The desired evaluation method. Options are 'traditional',
148
+ 'fair', and 'weighted'. If no weight dictionary is specified,
149
+ 'weighted' is identical to 'fair'.
150
+
151
+ - A weight dictionary to specify how much an error type should
152
+ count as one of the traditional error types (or as true positive).
153
+ Per default, every traditional error is counted as one error (or true positive)
154
+ and each error of the additional types is counted as half false positive and half false negative:
155
+
156
+ {"TP" : {"TP" : 1},
157
+ "FP" : {"FP" : 1},
158
+ "FN" : {"FN" : 1},
159
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
160
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
161
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
162
+
163
+ Other suggested weights to count boundary errors as half true positives:
164
+
165
+ {"TP" : {"TP" : 1},
166
+ "FP" : {"FP" : 1},
167
+ "FN" : {"FN" : 1},
168
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
169
+ "BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
170
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
171
+
172
+ Or to include different types of boundary errors:
173
+
174
+ {"TP" : {"TP" : 1},
175
+ "FP" : {"FP" : 1},
176
+ "FN" : {"FN" : 1},
177
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
178
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
179
+ "BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
180
+ "BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
181
+ "BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
182
+
183
+ Output:
184
+ The recall for the given input values.
185
+ In case of a ZeroDivisionError, the recall is set to 0.
186
+
187
+ """
188
+ traditional_weights = {
189
+ "TP" : {"TP" : 1},
190
+ "FP" : {"FP" : 1},
191
+ "FN" : {"FN" : 1}
192
+ }
193
+ default_fair_weights = {
194
+ "TP" : {"TP" : 1},
195
+ "FP" : {"FP" : 1},
196
+ "FN" : {"FN" : 1},
197
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
198
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
199
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
200
+ }
201
+ try:
202
+ tp = 0
203
+ fn = 0
204
+
205
+ #Set default weights for traditional evaluation
206
+ if version == "traditional":
207
+ weights = traditional_weights
208
+
209
+ #Set weights to default
210
+ #for fair evaluation or if no weights are given
211
+ elif version == "fair" or not weights:
212
+ weights = default_fair_weights
213
+
214
+ #Add weighted errors to true positive count
215
+ tp += sum(
216
+ [w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
217
+ )
218
+
219
+ #Add weighted errors to false negative count
220
+ fn += sum(
221
+ [w.get("FN", 0) * evaldict.get(error, 0) for error, w in weights.items()]
222
+ )
223
+
224
+ #Calculate recall
225
+ return tp / (tp + fn)
226
+
227
+ #Return zero if there are neither true positives nor false negatives
228
+ except ZeroDivisionError:
229
+ return 0.0
230
+
231
+ ######################
232
+
233
+ def fscore(evaldict):
234
+ """
235
+ Calculates F1-Score from given precision and recall values.
236
+
237
+ Input: A dictionary with a precision (key: Prec) and recall (key: Rec) value.
238
+ Output: The F1-Score. In case of a ZeroDivisionError, the F1-Score is set to 0.
239
+ """
240
+ try:
241
+ return 2 * (evaldict.get("Prec", 0) * evaldict.get("Rec", 0)) \
242
+ / (evaldict.get("Prec", 0) + evaldict.get("Rec", 0))
243
+ except ZeroDivisionError:
244
+ return 0.0
245
+
246
+ ######################
247
+
248
+ def overlap_type(span1, span2):
249
+ """
250
+ Determine the error type of two (overlapping) spans.
251
+
252
+ The function checks, if and how span1 and span2 overlap.
253
+ The first span serves as the basis against which the second
254
+ span is evaluated.
255
+
256
+ span1 ---XXXX---
257
+ span2 ---XXXX--- TP (identical)
258
+ span2 ----XXXX-- BEO (overlap)
259
+ span2 --XXXX---- BEO (overlap)
260
+ span2 ----XX---- BES (smaller)
261
+ span2 ---XX----- BES (smaller)
262
+ span2 --XXXXXX-- BEL (larger)
263
+ span2 --XXXXX--- BEL (larger)
264
+ span2 -X-------- False (no overlap)
265
+
266
+ Input:
267
+ Tuples (beginSpan1, endSpan1) and (beginSpan2, endSpan2),
268
+ where begin and end are the indices of the corresponding tokens.
269
+
270
+ Output:
271
+ Either one of the following strings
272
+ - "TP" = span1 and span2 are identical, i.e., actually no error here
273
+ - "BES" = span2 is shorter and contained within span1 (with at most one identical boundary)
274
+ - "BEL" = span2 is longer and contains span1 (with at most one identical boundary)
275
+ - "BEO" = span1 and span2 overlap with no identical boundary
276
+ or False if span1 and span2 do not overlap.
277
+ """
278
+ #Identical spans
279
+ if span1[0] == span2[0] and span1[1] == span2[1]:
280
+ return "TP"
281
+
282
+ #Start of spans is identical
283
+ if span1[0] == span2[0]:
284
+ #End of 2 is within span1
285
+ if span2[1] >= span1[0] and span2[1] < span1[1]:
286
+ return "BES"
287
+ #End of 2 is behind span1
288
+ else:
289
+ return "BEL"
290
+ #Start of 2 is before span1
291
+ elif span2[0] < span1[0]:
292
+ #End is before span 1
293
+ if span2[1] < span1[0]:
294
+ return False
295
+ #End is within span1
296
+ elif span2[1] < span1[1]:
297
+ return "BEO"
298
+ #End is identical or to the right
299
+ else:
300
+ return "BEL"
301
+ #Start of 2 is within span1
302
+ elif span2[0] >= span1[0] and span2[0] <= span1[1]:
303
+ #End of 2 is wihtin span1
304
+ if span2[1] <= span1[1]:
305
+ return "BES"
306
+ #End of 2 is to the right
307
+ else:
308
+ return "BEO"
309
+ #Start of 2 is behind span1
310
+ else:
311
+ return False
312
+
313
+ #####################################
314
+
315
+ def compare_spans(target_spans, system_spans, focus="target"):
316
+ """
317
+ Compare system and target spans to identify correct/incorrect annotations.
318
+
319
+ The function takes a list of target spans and system spans.
320
+ Each span is a 4-tuple of
321
+ - label: the span type as string
322
+ - begin: the index of first token; equals end for spans of length 1
323
+ - end: the index of the last token; equals begin for spans of length 1
324
+ - tokens: a set of token indices included in the span
325
+ (this allows the correct evaluation of
326
+ partially and multiply overlapping spans;
327
+ to allow for changes of the token set,
328
+ the span tuple is actually implemented as a list.)
329
+
330
+ The function first performs traditional evaluation on these spans
331
+ to identify true positives, false positives, and false negatives.
332
+ Then, the additional error types for fair evaluation are determined,
333
+ following steps 1 to 4:
334
+ 1. Count 1:1 mappings (TP, LE)
335
+ 2. Count boundary errors (BE = BES + BEL + BEO)
336
+ 3. Count labeling-boundary errors (LBE)
337
+ 4. Count 1:0 and 0:1 mappings (FN, FP)
338
+
339
+ Input:
340
+ - List of target spans
341
+ - List of system spans
342
+ - Wether to focus on the system or target annotation (default: target)
343
+
344
+ Output: A dictionary containing
345
+ - the counts of TP, FP, and FN according to traditional evaluation
346
+ (per label and overall)
347
+ - the counts of TP, FP, LE, BE, BES, BEL, BEO, and FN
348
+ (per label and overall; BE = BES + BEL + BEO)
349
+ - a confusion matrix {target_label1 : {system_label1 : count,
350
+ system_label2 : count,
351
+ ...},
352
+ target_label2 : ...
353
+ }
354
+ with an underscore '_' representing an empty label (FN/FP)
355
+ """
356
+
357
+ ##################################
358
+
359
+ def _max_sim(t, S):
360
+ """
361
+ Determine the most similar span s from S for span t.
362
+
363
+ Similarity is defined as
364
+ 1. the maximum number of shared tokens between s and t and
365
+ 2. the minimum number of tokens only in t
366
+ If multiple spans are equally similar, the shortest s is chosen.
367
+ If still multiple spans are equally similar, the first one in the list is chosen,
368
+ which corresponds to the left-most one if sentences are read from left to right.
369
+
370
+ Input:
371
+ - Span t as 4-tuple [label, begin, end, token_set]
372
+ - List S containing > 1 spans
373
+
374
+ Output: The most similar s for t.
375
+ """
376
+ S.sort(key=lambda s: (0-len(t[3].intersection(s[3])),
377
+ len(t[3].difference(s[3])),
378
+ len(s[3].difference(t[3])),
379
+ s[2]-s[1]))
380
+ return S[0]
381
+
382
+ ##################################
383
+
384
+ traditional_error_types = ["TP", "FP", "FN"]
385
+ additional_error_types = ["LE", "BE", "BEO", "BES", "BEL", "LBE"]
386
+
387
+ #Initialize empty eval dict
388
+ eval_dict = {"overall" : {"traditional" : {err_type : 0 for err_type
389
+ in traditional_error_types},
390
+ "fair" : {err_type : 0 for err_type
391
+ in traditional_error_types + additional_error_types}},
392
+ "per_label" : {"traditional" : {},
393
+ "fair" : {}},
394
+ "conf" : {}}
395
+
396
+ #Initialize per-label dict
397
+ for s in target_spans + system_spans:
398
+ if not s[0] in eval_dict["per_label"]["traditional"]:
399
+ eval_dict["per_label"]["traditional"][s[0]] = {err_type : 0 for err_type
400
+ in traditional_error_types}
401
+ eval_dict["per_label"]["fair"][s[0]] = {err_type : 0 for err_type
402
+ in traditional_error_types + additional_error_types}
403
+ #Initialize confusion matrix
404
+ if not s[0] in eval_dict["conf"]:
405
+ eval_dict["conf"][s[0]] = {}
406
+ eval_dict["conf"]["_"] = {}
407
+ for lab in list(eval_dict["conf"])+["_"]:
408
+ for lab2 in list(eval_dict["conf"])+["_"]:
409
+ eval_dict["conf"][lab][lab2] = 0
410
+
411
+ ################################################
412
+ ### Traditional evaluation (overall + per label)
413
+
414
+ for t in target_spans:
415
+ #Spans in target and system annotation are true positives
416
+ if t in system_spans:
417
+ eval_dict["overall"]["traditional"]["TP"] += 1
418
+ eval_dict["per_label"]["traditional"][t[0]]["TP"] += 1
419
+ #Spans only in target annotation are false negatives
420
+ else:
421
+ eval_dict["overall"]["traditional"]["FN"] += 1
422
+ eval_dict["per_label"]["traditional"][t[0]]["FN"] += 1
423
+ for s in system_spans:
424
+ #Spans only in system annotation are false positives
425
+ if not s in target_spans:
426
+ eval_dict["overall"]["traditional"]["FP"] += 1
427
+ eval_dict["per_label"]["traditional"][s[0]]["FP"] += 1
428
+
429
+ ###########################################################
430
+ ### Fair evaluation (overall, per label + confusion matrix)
431
+
432
+ ### Identical spans (TP and LE)
433
+
434
+ ### TP
435
+ #Identify true positives (identical spans between target and system)
436
+ tps = [t for t in target_spans if t in system_spans]
437
+ for t in tps:
438
+ s = [s for s in system_spans if s == t]
439
+ if s:
440
+ s = s[0]
441
+ eval_dict["overall"]["fair"]["TP"] += 1
442
+ eval_dict["per_label"]["fair"][t[0]]["TP"] += 1
443
+ #After counting, remove from input lists
444
+ system_spans.remove(s)
445
+ target_spans.remove(t)
446
+
447
+ ### LE
448
+ #Identify labeling error: identical span but different label
449
+ les = [t for t in target_spans
450
+ if any(t[0] != s[0] and t[1:3] == s[1:3] for s in system_spans)]
451
+ for t in les:
452
+ s = [s for s in system_spans if t[0] != s[0] and t[1:3] == s[1:3]]
453
+ if s:
454
+ s = s[0]
455
+ #Overall: count as one LE
456
+ eval_dict["overall"]["fair"]["LE"] += 1
457
+ #Per label: depending on focus count for target label or system label
458
+ if focus == "target":
459
+ eval_dict["per_label"]["fair"][t[0]]["LE"] += 1
460
+ elif focus == "system":
461
+ eval_dict["per_label"]["fair"][s[0]]["LE"] += 1
462
+ #Add to confusion matrix
463
+ eval_dict["conf"][t[0]][s[0]] += 1
464
+ #After counting, remove from input lists
465
+ system_spans.remove(s)
466
+ target_spans.remove(t)
467
+
468
+ ### Boundary errors
469
+
470
+ #Create lists to collect matched spans
471
+ counted_target = list()
472
+ counted_system = list()
473
+
474
+ #Sort lists by span length (shortest to longest)
475
+ target_spans.sort(key=lambda t : t[2] - t[1])
476
+ system_spans.sort(key=lambda s : s[2] - s[1])
477
+
478
+ ### BE
479
+
480
+ ## 1. Compare input lists
481
+ #Identify boundary errors: identical label but different, overlapping span
482
+ i = 0
483
+ while i < len(target_spans):
484
+ t = target_spans[i]
485
+
486
+ #Find possible boundary errors
487
+ be = [s for s in system_spans
488
+ if t[0] == s[0] and t[1:3] != s[1:3]
489
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
490
+ if not be:
491
+ i += 1
492
+ continue
493
+
494
+ #If there is more than one possible BE, take most similar one
495
+ if len(be) > 1:
496
+ s = _max_sim(t, be)
497
+ else:
498
+ s = be[0]
499
+
500
+ #Determine overlap type
501
+ be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
502
+
503
+ #Overall: Count as BE and more fine-grained BE type
504
+ eval_dict["overall"]["fair"]["BE"] += 1
505
+ eval_dict["overall"]["fair"][be_type] += 1
506
+
507
+ #Per-label: count as general BE and specific BE type
508
+ eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
509
+ eval_dict["per_label"]["fair"][t[0]][be_type] += 1
510
+
511
+ #Add to confusion matrix
512
+ eval_dict["conf"][t[0]][s[0]] += 1
513
+
514
+ #Remove matched spans from input list
515
+ system_spans.remove(s)
516
+ target_spans.remove(t)
517
+
518
+ #Remove matched tokens from spans
519
+ matching_tokens = t[3].intersection(s[3])
520
+ s[3] = s[3].difference(matching_tokens)
521
+ t[3] = t[3].difference(matching_tokens)
522
+
523
+ #Move matched spans to counted list
524
+ counted_system.append(s)
525
+ counted_target.append(t)
526
+
527
+ ## 2. Compare input target list with matched system list
528
+ i = 0
529
+ while i < len(target_spans):
530
+ t = target_spans[i]
531
+
532
+ #Find possible boundary errors in already matched spans
533
+ #that still share unmatched tokens
534
+ be = [s for s in counted_system
535
+ if t[0] == s[0] and t[1:3] != s[1:3]
536
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
537
+ and t[3].intersection(s[3])]
538
+ if not be:
539
+ i += 1
540
+ continue
541
+
542
+ #If there is more than one possible BE, take most similar one
543
+ if len(be) > 1:
544
+ s = _max_sim(t, be)
545
+ else:
546
+ s = be[0]
547
+
548
+ #Determine overlap type
549
+ be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
550
+
551
+ #Overall: Count as BE and more fine-grained BE type
552
+ eval_dict["overall"]["fair"]["BE"] += 1
553
+ eval_dict["overall"]["fair"][be_type] += 1
554
+
555
+ #Per-label: count as general BE and specific BE type
556
+ eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
557
+ eval_dict["per_label"]["fair"][t[0]][be_type] += 1
558
+
559
+ #Add to confusion matrix
560
+ eval_dict["conf"][t[0]][s[0]] += 1
561
+
562
+ #Remove matched span from input list
563
+ target_spans.remove(t)
564
+
565
+ #Remove matched tokens from spans
566
+ matching_tokens = t[3].intersection(s[3])
567
+ counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
568
+ t[3] = t[3].difference(matching_tokens)
569
+
570
+ #Move target span to counted list
571
+ counted_target.append(t)
572
+
573
+ ## 3. Compare input system list with matched target list
574
+ i = 0
575
+ while i < len(system_spans):
576
+ s = system_spans[i]
577
+
578
+ #Find possible boundary errors in already matched target spans
579
+ be = [t for t in counted_target
580
+ if t[0] == s[0] and t[1:3] != s[1:3]
581
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
582
+ and t[3].intersection(s[3])]
583
+ if not be:
584
+ i += 1
585
+ continue
586
+
587
+ #If there is more than one possible BE, take most similar one
588
+ if len(be) > 1:
589
+ t = _max_sim(s, be)
590
+ else:
591
+ t = be[0]
592
+
593
+ #Determine overlap type
594
+ be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
595
+
596
+ #Overall: Count as BE and more fine-grained BE type
597
+ eval_dict["overall"]["fair"]["BE"] += 1
598
+ eval_dict["overall"]["fair"][be_type] += 1
599
+
600
+ #Per-label: count as general BE and specific BE type
601
+ eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
602
+ eval_dict["per_label"]["fair"][t[0]][be_type] += 1
603
+
604
+ #Add to confusion matrix
605
+ eval_dict["conf"][t[0]][s[0]] += 1
606
+
607
+ #Remove matched span from input list
608
+ system_spans.remove(s)
609
+
610
+ #Remove matched tokens from spans
611
+ matching_tokens = t[3].intersection(s[3])
612
+ counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
613
+ s[3] = s[3].difference(matching_tokens)
614
+
615
+ #Move system span to counted list
616
+ counted_system.append(s)
617
+
618
+ ### LBE
619
+
620
+ ## 1. Compare input lists
621
+ #Identify labeling-boundary errors: different label but overlapping span
622
+ i = 0
623
+ while i < len(target_spans):
624
+ t = target_spans[i]
625
+
626
+ #Find possible boundary errors
627
+ lbe = [s for s in system_spans
628
+ if t[0] != s[0] and t[1:3] != s[1:3]
629
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
630
+ if not lbe:
631
+ i += 1
632
+ continue
633
+
634
+ #If there is more than one possible LBE, take most similar one
635
+ if len(lbe) > 1:
636
+ s = _max_sim(t, lbe)
637
+ else:
638
+ s = lbe[0]
639
+
640
+ #Overall: count as LBE
641
+ eval_dict["overall"]["fair"]["LBE"] += 1
642
+
643
+ #Per label: depending on focus count as LBE for target or system label
644
+ if focus == "target":
645
+ eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
646
+ elif focus == "system":
647
+ eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
648
+
649
+ #Add to confusion matrix
650
+ eval_dict["conf"][t[0]][s[0]] += 1
651
+
652
+ #Remove matched spans from input list
653
+ system_spans.remove(s)
654
+ target_spans.remove(t)
655
+
656
+ #Remove matched tokens from spans
657
+ matching_tokens = t[3].intersection(s[3])
658
+ s[3] = s[3].difference(matching_tokens)
659
+ t[3] = t[3].difference(matching_tokens)
660
+
661
+ #Move spans to counted lists
662
+ counted_system.append(s)
663
+ counted_target.append(t)
664
+
665
+ ## 2. Compare input target list with matched system list
666
+ i = 0
667
+ while i < len(target_spans):
668
+ t = target_spans[i]
669
+
670
+ #Find possible labeling-boundary errors in already matched system spans
671
+ lbe = [s for s in counted_system
672
+ if t[0] != s[0] and t[1:3] != s[1:3]
673
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
674
+ and t[3].intersection(s[3])]
675
+ if not lbe:
676
+ i += 1
677
+ continue
678
+
679
+ #If there is more than one possible LBE, take most similar one
680
+ if len(lbe) > 1:
681
+ s = _max_sim(t, lbe)
682
+ else:
683
+ s = lbe[0]
684
+
685
+ #Overall: count as LBE
686
+ eval_dict["overall"]["fair"]["LBE"] += 1
687
+
688
+ #Per label: depending on focus count as LBE for target or system label
689
+ if focus == "target":
690
+ eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
691
+ elif focus == "system":
692
+ eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
693
+
694
+ #Add to confusion matrix
695
+ eval_dict["conf"][t[0]][s[0]] += 1
696
+
697
+ #Remove matched span from input list
698
+ target_spans.remove(t)
699
+
700
+ #Remove matched tokens from spans
701
+ matching_tokens = t[3].intersection(s[3])
702
+ counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
703
+ t[3] = t[3].difference(matching_tokens)
704
+
705
+ #Move target span to counted list
706
+ counted_target.append(t)
707
+
708
+ ## 3. Compare input system list with matched target list
709
+ i = 0
710
+ while i < len(system_spans):
711
+ s = system_spans[i]
712
+
713
+ #Find possible labeling-boundary errors in already matched target spans
714
+ lbe = [t for t in counted_target
715
+ if t[0] != s[0] and t[1:3] != s[1:3]
716
+ and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
717
+ and t[3].intersection(s[3])]
718
+ if not lbe:
719
+ i += 1
720
+ continue
721
+
722
+ #If there is more than one possible LBE, take most similar one
723
+ if len(lbe) > 1:
724
+ t = _max_sim(s, lbe)
725
+ else:
726
+ t = lbe[0]
727
+
728
+ #Overall: count as LBE
729
+ eval_dict["overall"]["fair"]["LBE"] += 1
730
+
731
+ #Per label: depending on focus count as LBE for target or system label
732
+ if focus == "target":
733
+ eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
734
+ elif focus == "system":
735
+ eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
736
+
737
+ #Add to confusion matrix
738
+ eval_dict["conf"][t[0]][s[0]] += 1
739
+
740
+ #Remove matched span from input list
741
+ system_spans.remove(s)
742
+
743
+ #Remove matched tokens from spans
744
+ matching_tokens = t[3].intersection(s[3])
745
+ counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
746
+ s[3] = s[3].difference(matching_tokens)
747
+
748
+ #Move matched system span to counted list
749
+ counted_system.append(s)
750
+
751
+ ### 1:0 and 0:1 mappings
752
+
753
+ #FN: identify false negatives
754
+ for t in target_spans:
755
+ eval_dict["overall"]["fair"]["FN"] += 1
756
+ eval_dict["per_label"]["fair"][t[0]]["FN"] += 1
757
+ eval_dict["conf"][t[0]]["_"] += 1
758
+
759
+ #FP: identify false positives
760
+ for s in system_spans:
761
+ eval_dict["overall"]["fair"]["FP"] += 1
762
+ eval_dict["per_label"]["fair"][s[0]]["FP"] += 1
763
+ eval_dict["conf"]["_"][s[0]] += 1
764
+
765
+ return eval_dict
766
+
767
+ ############################
768
+
769
+ def annotation_stats(target_spans, **config):
770
+ """
771
+ Count the target annotations to display simple statistics.
772
+
773
+ The function takes a list of target spans
774
+ with each span being a 4-tuple [label, begin, end, token_set]
775
+ and adds the included labels to the general data stats dictionary.
776
+
777
+ Input:
778
+ - List of target spans
779
+ - Config dictionary
780
+
781
+ Output: The config dictionary is modified in-place.
782
+ """
783
+ stats_dict = config.get("data_stats", {})
784
+ for span in target_spans:
785
+ if span[0] in stats_dict:
786
+ stats_dict[span[0]] += 1
787
+ else:
788
+ stats_dict[span[0]] = 1
789
+ config["data_stats"] = stats_dict
790
+
791
+ ############################
792
+
793
+ def get_spans(sentence, **config):
794
+ """
795
+ Return spans from CoNLL2000 or span files.
796
+
797
+ The function determines the data format of the input sentence
798
+ and extracts the spans from it accordingly.
799
+
800
+ If desired, punctuation can be ignored (config['ignore_punct'] == True)
801
+ for files in the CoNLL2000 format that include POS information.
802
+ The following list of tags is considered as punctuation:
803
+ ['$.', '$,', '$(', #STTS
804
+ 'PUNCT', #UPOS
805
+ 'PUNKT', 'KOMMA', 'COMMA', 'KLAMMER', #custom
806
+ '.', ',', ':', '(', ')', '"', '‘', '“', '’', '”' #PTB
807
+ ]
808
+
809
+ Labels that should be ignored (included in config['exclude']
810
+ or not included in config['labels'] if config['labels'] != 'all')
811
+ are also removed from the resulting list.
812
+
813
+ Input:
814
+ - List of lines for a given sentence
815
+ - Config dictionary
816
+
817
+ Output: List of spans that are included in the sentence.
818
+ """
819
+
820
+ ################
821
+
822
+ def spans_from_conll(sentence):
823
+ """
824
+ Read annotation spans from a CoNLL2000 file.
825
+
826
+ The function takes a list of lines (belonging to one sentence)
827
+ and extracts the annotated spans. The lines are expected to
828
+ contain three space-separated columns:
829
+
830
+ Form XPOS Annotation
831
+
832
+ Form: Word form
833
+ XPOS: POS tag of the word (ideally STTS, UPOS, or PTB)
834
+ Annotation: Span annotation in BIO format (see below);
835
+ multiple spans are separated with the pipe symbol '|'
836
+
837
+ BIO tags consist of the token's position in the span
838
+ (begin 'B', inside 'I', outside 'O'), a dash '-' and the span label,
839
+ e.g., B-NP, I-AC, or in the case of stacked annotations I-RELC|B-NP.
840
+
841
+ The function accepts 'O', '_' and '' as annotations outside of spans.
842
+
843
+ Input: List of lines belonging to one sentence.
844
+ Output: List of spans as 4-tuples [label, begin, end, token_set]
845
+ """
846
+ spans = []
847
+ span_stack = []
848
+
849
+ #For each token
850
+ for t, tok in enumerate(sentence):
851
+
852
+ #Token is [Form, XPOS, Annotation]
853
+ tok = tok.split()
854
+
855
+ #Token is not annotated
856
+ if tok[-1] in ["O", "_", ""]:
857
+ #Add previous stack to span list
858
+ #(sorted from left to right)
859
+ while span_stack:
860
+ spans.append(span_stack.pop(0))
861
+ span_stack = []
862
+ continue
863
+
864
+ #Token is annotated
865
+ #Split stacked annotations at pipe
866
+ annotations = tok[-1].strip().split("|")
867
+
868
+ #While there are more annotation levels on
869
+ #the stack than at the current token,
870
+ #close annotations on the stack (i.e., move
871
+ #them to result list)
872
+ while len(span_stack) > len(annotations):
873
+ spans.append(span_stack.pop())
874
+
875
+ #For each annotation of the current token
876
+ for i, annotation in enumerate(annotations):
877
+
878
+ #New span
879
+ if annotation.startswith("B-"):
880
+
881
+ #If it's the first annotation level and there is
882
+ #something on the stack, move it to result list
883
+ if i == 0 and span_stack:
884
+ while span_stack:
885
+ spans.append(span_stack.pop(0))
886
+ #Otherwise, end same-level annotation on the
887
+ #stack (because a new span begins here) and
888
+ #move it to the result list
889
+ else:
890
+ while len(span_stack) > i:
891
+ spans.append(span_stack.pop())
892
+
893
+ #Last part of BIO tag is the label
894
+ label = annotation.split("-")[1]
895
+
896
+ #Create a new span with this token's
897
+ #index as start and end (incremendet by one).
898
+ s = [label, t+1, t+1, {t+1}]
899
+
900
+ #Add on top of stack
901
+ span_stack.append(s)
902
+
903
+ #Span continues
904
+ elif annotation.startswith("I-"):
905
+ #Increment the end index of the span
906
+ #at the level of this annotation on the stack
907
+ span_stack[i][2] = t+1
908
+ #Also, add the index to the token set
909
+ span_stack[i][-1].add(t+1)
910
+
911
+ #Add sentence final span(s)
912
+ while span_stack:
913
+ spans.append(span_stack.pop(0))
914
+
915
+ return spans
916
+
917
+ ################
918
+
919
+ def spans_from_lines(sentence):
920
+ """
921
+ Read annotation spans from a span file.
922
+
923
+ The function takes a list of lines (belonging to one sentence)
924
+ and extracts the annotated spans. The lines are expected to
925
+ contain four tab-separated columns:
926
+
927
+ Label Begin End Tokens
928
+
929
+ Label: Span label
930
+ Begin: Index of the first included token (must be convertible to int)
931
+ End: Index of the last included token (must be convertible to int
932
+ and equal or greater than begin)
933
+ Tokens: Comma-separated list of indices of the tokens in the span
934
+ (must be convertible to int with begin <= i <= end);
935
+ if no (valid) indices are given, the range begin:end is used
936
+
937
+ Input: List of lines belonging to one sentence.
938
+ Output: List of spans as 4-tuples [label, begin, end, token_set]
939
+ """
940
+ spans = []
941
+ for line in sentence:
942
+ vals = line.split("\t")
943
+ label = vals[0]
944
+ if not label:
945
+ print("ERROR: Missing label in input.")
946
+ return []
947
+ try:
948
+ begin = int(vals[1])
949
+ if begin < 1: raise ValueError
950
+ except ValueError:
951
+ print("ERROR: Begin {0} is not a legal index.".format(vals[1]))
952
+ return []
953
+ try:
954
+ end = int(vals[2])
955
+ if end < 1: raise ValueError
956
+ if end < begin: begin, end = end, begin
957
+ except ValueError:
958
+ print("ERROR: End {0} is not a legal index.".format(vals[2]))
959
+ return []
960
+ try:
961
+ toks = [int(v.strip()) for v in vals[-1].split(",")
962
+ if int(v.strip()) >= begin and int(v.strip()) <= end]
963
+ toks = set(toks)
964
+ except ValueError:
965
+ toks = []
966
+ if not toks:
967
+ toks = [i for i in range(begin, end+1)]
968
+ spans.append([label, begin, end, toks])
969
+ return spans
970
+
971
+ ################
972
+
973
+ #Determine data format
974
+
975
+ #Span files contain 4 tab-separated columns
976
+ if len(sentence[0].split("\t")) == 4:
977
+ format = "spans"
978
+ spans = spans_from_lines(sentence)
979
+
980
+ #CoNLL2000 files contain 3 space-separated columns
981
+ elif len(sentence[0].split(" ")) == 3:
982
+ format = "conll2000"
983
+ spans = spans_from_conll(sentence)
984
+ else:
985
+ print("ERROR: Unknown input format")
986
+ return []
987
+
988
+ #Exclude punctuation from CoNLL2000, if desired
989
+ if format == "conll2000" \
990
+ and config.get("ignore_punct") == True:
991
+
992
+ #For each punctuation tok
993
+ for i, line in enumerate(sentence):
994
+ if line.split(" ")[1] in ["$.", "$,", "$(", #STTS
995
+ "PUNCT", #UPOS
996
+ "PUNKT", "KOMMA", "COMMA", "KLAMMER", #custom
997
+ ".", ",", ":", "(", ")", "\"", "‘", "“", "’", "”" #PTB
998
+ ]:
999
+
1000
+ for s in range(len(spans)):
1001
+ #Remove punc tok from set
1002
+ spans[s][-1].discard(i+1)
1003
+
1004
+ #If span begins with punc, move begin
1005
+ if spans[s][1] == i+1:
1006
+ if spans[s][2] != None and spans[s][2] > i+1:
1007
+ spans[s][1] = i+2
1008
+ else:
1009
+ spans[s][1] = None
1010
+
1011
+ #If span ends with punc, move end
1012
+ if spans[s][2] == i+1:
1013
+ if spans[s][1] != None and spans[s][1] <= i:
1014
+ spans[s][2] = i
1015
+ else:
1016
+ spans[s][2] = None
1017
+
1018
+ #Remove empty spans
1019
+ spans = [s for s in spans if s[1] != None and s[2] != None and len(s[3]) > 0]
1020
+
1021
+ #Exclude unwanted labels
1022
+ spans = [s for s in spans
1023
+ if not s[0] in config.get("exclude", [])
1024
+ and ("all" in config.get("labels", [])
1025
+ or s[0] in config.get("labels", []))]
1026
+
1027
+ return spans
1028
+
1029
+ ############################
1030
+
1031
+ def get_sentences(filename):
1032
+ """
1033
+ Reads sentences from input files.
1034
+
1035
+ The function iterates through the input file and
1036
+ yields a list of lines that belong to one sentence.
1037
+ Sentences are expected to be separated by an empty line.
1038
+
1039
+ Input: Filename of the input file.
1040
+ Output: Yields a list of lines for each sentence.
1041
+ """
1042
+ file = open(filename, mode="r", encoding="utf-8")
1043
+ sent = []
1044
+
1045
+ for line in file:
1046
+ #New line: yield collected lines
1047
+ if sent and not line.strip():
1048
+ yield sent
1049
+ sent = []
1050
+ #New line but nothing to yield
1051
+ elif not line.strip():
1052
+ continue
1053
+ #Collect line of current sentence
1054
+ else:
1055
+ sent.append(line.strip())
1056
+
1057
+ #Last sentence if file doesn't end with empty line
1058
+ if sent:
1059
+ yield sent
1060
+
1061
+ file.close()
1062
+
1063
+ #############################
1064
+
1065
+ def add_dict(base_dict, dict_to_add):
1066
+ """
1067
+ Take a base dictionary and add the values
1068
+ from another dictionary to it.
1069
+
1070
+ Contrary to standard dict update methods,
1071
+ this function does not overwrite values in the
1072
+ base dictionary. Instead, it is meant to add
1073
+ the values of the second dictionary to the values
1074
+ in the base dictionary. The dictionary is modified in-place.
1075
+
1076
+ For example:
1077
+
1078
+ >> base = {"A" : 1, "B" : {"c" : 2, "d" : 3}, "C" : [1, 2, 3]}
1079
+ >> add = {"A" : 1, "B" : {"c" : 1, "e" : 1}, "C" : [4], "D" : 2}
1080
+ >> add_dict(base, add)
1081
+
1082
+ will create a base dictionary:
1083
+
1084
+ >> base
1085
+ {'A': 2, 'B': {'c': 3, 'd': 3, 'e': 1}, 'C': [1, 2, 3, 4], 'D': 2}
1086
+
1087
+ The function can handle different types of nested structures.
1088
+ - Integers and float values are summed up.
1089
+ - Lists are appended
1090
+ - Sets are added (set union)
1091
+ - Dictionaries are added recursively
1092
+ For other value types, the base dictionary is left unchanged.
1093
+
1094
+ Input: Base dictionary and dictionary to be added.
1095
+ Output: Base dictionary.
1096
+ """
1097
+
1098
+ #For each key in second dict
1099
+ for key, val in dict_to_add.items():
1100
+
1101
+ #It is already in the base dict
1102
+ if key in base_dict:
1103
+
1104
+ #It has an integer or float value
1105
+ if isinstance(val, (int, float)) \
1106
+ and isinstance(base_dict[key], (int, float)):
1107
+
1108
+ #Increment value in base dict
1109
+ base_dict[key] += val
1110
+
1111
+ #It has an iterable as value
1112
+ elif isinstance(val, Iterable) \
1113
+ and isinstance(base_dict[key], Iterable):
1114
+
1115
+ #List
1116
+ if isinstance(val, list) \
1117
+ and isinstance(base_dict[key], list):
1118
+ #Append
1119
+ base_dict[key].extend(val)
1120
+
1121
+ #Set
1122
+ elif isinstance(val, set) \
1123
+ and isinstance(base_dict[key], set):
1124
+ #Set union
1125
+ base_dict[key].update(val)
1126
+
1127
+ #Dict
1128
+ elif isinstance(val, dict) \
1129
+ and isinstance(base_dict[key], dict):
1130
+ #Recursively repeat
1131
+ add_dict(base_dict[key], val)
1132
+
1133
+ #Something else
1134
+ else:
1135
+ #Do nothing
1136
+ pass
1137
+
1138
+ #It has something else as value
1139
+ else:
1140
+ #Do nothing
1141
+ pass
1142
+
1143
+ #It is not in the base dict
1144
+ else:
1145
+ #Insert values from second dict into base
1146
+ base_dict[key] = deepcopy(val)
1147
+
1148
+ return base_dict
1149
+
1150
+ #############################
1151
+
1152
+ def calculate_results(eval_dict, **config):
1153
+ """
1154
+ Calculate overall precision, recall, and F-scores.
1155
+
1156
+ The function takes an evaluation dictionary with error counts
1157
+ and applies the precision, recall and fscore functions.
1158
+
1159
+ It will calculate the traditional metrics
1160
+ and fair and/or weighted metrics, depending on the
1161
+ value of config['eval_method'].
1162
+
1163
+ The results are stored in the eval dict as 'Prec', 'Rec' and 'F1'
1164
+ for overall and per-label counts.
1165
+
1166
+ Input: Evaluation dict and config dict.
1167
+ Output: Evaluation dict with added precision, recall and F1 values.
1168
+ """
1169
+
1170
+ #If weighted evaluation should be performed
1171
+ #copy error counts from fair evaluation
1172
+ if "weighted" in config.get("eval_method", []):
1173
+ eval_dict["overall"]["weighted"] = {}
1174
+ for err_type in eval_dict["overall"]["fair"]:
1175
+ eval_dict["overall"]["weighted"][err_type] = eval_dict["overall"]["fair"][err_type]
1176
+ for label in eval_dict["per_label"]["fair"]:
1177
+ eval_dict["per_label"]["weighted"][label] = {}
1178
+ for err_type in eval_dict["per_label"]["fair"][label]:
1179
+ eval_dict["per_label"]["weighted"][label][err_type] = eval_dict["per_label"]["fair"][label][err_type]
1180
+
1181
+ #For each evaluation method
1182
+ for version in config.get("eval_method", ["traditional", "fair"]):
1183
+
1184
+ #Overall results
1185
+ eval_dict["overall"][version]["Prec"] = precision(eval_dict["overall"][version],
1186
+ version,
1187
+ config.get("weights", {}))
1188
+ eval_dict["overall"][version]["Rec"] = recall(eval_dict["overall"][version],
1189
+ version,
1190
+ config.get("weights", {}))
1191
+ eval_dict["overall"][version]["F1"] = fscore(eval_dict["overall"][version])
1192
+
1193
+ #Per label results
1194
+ for label in eval_dict["per_label"][version]:
1195
+ eval_dict["per_label"][version][label]["Prec"] = precision(eval_dict["per_label"][version][label],
1196
+ version,
1197
+ config.get("weights", {}))
1198
+ eval_dict["per_label"][version][label]["Rec"] = recall(eval_dict["per_label"][version][label],
1199
+ version,
1200
+ config.get("weights", {}))
1201
+ eval_dict["per_label"][version][label]["F1"] = fscore(eval_dict["per_label"][version][label])
1202
+
1203
+ return eval_dict
1204
+
1205
+ #############################
1206
+
1207
+ def output_results(eval_dict, **config):
1208
+ """
1209
+ Write evaluation results to the output (file).
1210
+
1211
+ The function takes an evaluation dict and writes
1212
+ all results to the specified output (file):
1213
+
1214
+ 1. Traditional evaluation results
1215
+ 2. Additional evaluation results (fair and/or weighted)
1216
+ 3. Result comparison for different evaluation methods
1217
+ 4. Confusion matrix
1218
+ 5. Data statistics
1219
+
1220
+ Input: Evaluation dict and config dict.
1221
+ """
1222
+ outfile = config.get("eval_out", sys.stdout)
1223
+
1224
+ ### Output results for each evaluation method
1225
+ for version in config.get("eval_method", ["traditional", "fair"]):
1226
+ print(file=outfile)
1227
+ print("### {0} evaluation:".format(version.title()), file=outfile)
1228
+
1229
+ #Determine error categories to output
1230
+ if version == "traditional":
1231
+ cats = ["TP", "FP", "FN"]
1232
+ elif version == "fair" or not config.get("weights", {}):
1233
+ cats = ["TP", "FP", "LE", "BE", "LBE", "FN"]
1234
+ else:
1235
+ cats = list(config.get("weights").keys())
1236
+
1237
+ #Print header
1238
+ print("Label", "\t".join(cats), "Prec", "Rec", "F1", sep="\t", file=outfile)
1239
+
1240
+ #Output results for each label
1241
+ for label,val in sorted(eval_dict["per_label"][version].items()):
1242
+ print(label,
1243
+ "\t".join([str(val.get(cat, eval_dict["per_label"]["fair"].get(cat, 0)))
1244
+ for cat in cats]),
1245
+ "\t".join(["{:04.2f}".format(val.get(metric, 0)*100)
1246
+ for metric in ["Prec", "Rec", "F1"]]),
1247
+ sep="\t", file=outfile)
1248
+
1249
+ #Output overall results
1250
+ print("overall",
1251
+ "\t".join([str(eval_dict["overall"][version].get(cat, eval_dict["overall"]["fair"].get(cat, 0)))
1252
+ for cat in cats]),
1253
+ "\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
1254
+ for metric in ["Prec", "Rec", "F1"]]),
1255
+ sep="\t", file=outfile)
1256
+
1257
+ ### Output result comparison
1258
+ print(file=outfile)
1259
+ print("### Comparison:", file=outfile)
1260
+ print("Version", "Prec", "Rec", "F1", sep="\t", file=outfile)
1261
+ for version in config.get("eval_method", ["traditional", "fair"]):
1262
+ print(version.title(),
1263
+ "\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
1264
+ for metric in ["Prec", "Rec", "F1"]]),
1265
+ sep="\t", file=outfile)
1266
+
1267
+ ### Output confusion matrix
1268
+ print(file=outfile)
1269
+ print("### Confusion matrix:", file=outfile)
1270
+
1271
+ #Get set of target labels
1272
+ labels = {lab for lab in eval_dict["conf"]}
1273
+
1274
+ #Add system labels
1275
+ labels = list(labels.union({syslab
1276
+ for lab in eval_dict["conf"]
1277
+ for syslab in eval_dict["conf"][lab]}))
1278
+
1279
+ #Sort alphabetically for output
1280
+ labels.sort()
1281
+
1282
+ #Print top row with system labels
1283
+ print(r"Target\System", "\t".join(labels), sep="\t", file=outfile)
1284
+
1285
+ #Print rows with target labels and counts
1286
+ for targetlab in labels:
1287
+ print(targetlab,
1288
+ "\t".join([str(eval_dict["conf"][targetlab].get(syslab, 0))
1289
+ for syslab in labels]),
1290
+ sep="\t", file=outfile)
1291
+
1292
+ #Output data statistic
1293
+ print(file=outfile)
1294
+ print("### Target data stats:", file=outfile)
1295
+ print("Label", "Freq", "%", sep="\t", file=outfile)
1296
+ total = sum(config.get("data_stats", {}).values())
1297
+ for lab, freq in config.get("data_stats", {}).items():
1298
+ print(lab, freq, "{:04.2f}".format(freq/total*100), sep="\t", file=outfile)
1299
+
1300
+ #Close output if it is a file
1301
+ if isinstance(config.get("eval_out"), TextIOWrapper):
1302
+ outfile.close()
1303
+
1304
+ #############################
1305
+
1306
+ def read_config(config_file):
1307
+ """
1308
+ Function to set program parameters as specified in the config file.
1309
+
1310
+ The following parameters are handled:
1311
+
1312
+ - target_in: path to the target file(s) with gold standard annotation
1313
+ -> output: 'target_files' : [list of target file paths]
1314
+
1315
+ - system_in: path to the system's output file(s), which are evaluated
1316
+ -> output: 'system_files' : [list of system file paths]
1317
+
1318
+ - eval_out: path or filename, where evaluation results should be stored
1319
+ if value is a path, output file 'path/eval.csv' is created
1320
+ if value is 'cmd' or missing, output is set to sys.stdout
1321
+ -> output: 'eval_out' : output file or sys.stdout
1322
+
1323
+ - labels: comma-separated list of labels to evaluate
1324
+ defaults to 'all'
1325
+ -> output: 'labels' : [list of labels as strings]
1326
+
1327
+ - exclude: comma-separated list of labels to exclude from evaluation
1328
+ always contains 'NONE' and 'EMPTY'
1329
+ -> output: 'exclude' : [list of labels as strings]
1330
+
1331
+ - ignore_punct: wether to ignore punctuation during evaluation (true/false)
1332
+ -> output: 'ignore_punct' : True/False
1333
+
1334
+ - focus: wether to focus the evaluation on 'target' or 'system' annotations
1335
+ defaults to 'target'
1336
+ -> output: 'focus' : 'target' or 'system'
1337
+
1338
+ - weights: weights that should be applied during calculation of precision
1339
+ and recall; at the same time can serve as a list of additional
1340
+ error types to include in the evaluation
1341
+ the weights are parsed from comma-separated input formulas of the form
1342
+
1343
+ error_type = weight * TP + weight2 * FP + weight3 * FN
1344
+
1345
+ -> output: 'weights' : { 'error type' : {
1346
+ 'TP' : weight,
1347
+ 'FP' : weight,
1348
+ 'FN' : weight
1349
+ },
1350
+ 'another error type' : {...}
1351
+ }
1352
+
1353
+ - eval_method: defines which evaluation method(s) to use
1354
+ one or more of: 'traditional', 'fair', 'weighted'
1355
+ if value is 'all' or missing, all available methods are returned
1356
+ -> output: 'eval_method' : [list of eval methods]
1357
+
1358
+ Input: Filename of the config file.
1359
+ Output: Settings dictionary.
1360
+ """
1361
+
1362
+ ############################
1363
+
1364
+ def _parse_config(key, val):
1365
+ """
1366
+ Internal function to set specific values for the given keys.
1367
+ In case of illegal values, prints error message and sets key and/or value to None.
1368
+ Input: Key and value from config file
1369
+ Output: Modified key and value
1370
+ """
1371
+ if key in ["target_in", "system_in"]:
1372
+ if os.path.isdir(val):
1373
+ val = os.path.normpath(val)
1374
+ files = [os.path.join(val, f) for f in os.listdir(val)]
1375
+ elif os.path.isfile(val):
1376
+ files = [os.path.normpath(val)]
1377
+ else:
1378
+ print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
1379
+ return None, None
1380
+ if key == "target_in":
1381
+ return "target_files", files
1382
+ elif key == "system_in":
1383
+ return "system_files", files
1384
+
1385
+ elif key == "eval_out":
1386
+ if os.path.isdir(val):
1387
+ val = os.path.normpath(val)
1388
+ outfile = os.path.join(val, "eval.csv")
1389
+ elif os.path.isfile(val):
1390
+ outfile = os.path.normpath(val)
1391
+ elif val == "cmd":
1392
+ outfile = sys.stdout
1393
+ else:
1394
+ try:
1395
+ p, f = os.path.split(val)
1396
+ if not os.path.isdir(p):
1397
+ os.makedirs(p)
1398
+ outfile = os.path.join(p, f)
1399
+ except:
1400
+ print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
1401
+ return None, None
1402
+ return key, outfile
1403
+
1404
+ elif key in ["labels", "exclude"]:
1405
+ labels = list(set([v.strip() for v in val.split(",") if v.strip()]))
1406
+ if key == "exclude":
1407
+ labels.append("NONE")
1408
+ labels.append("EMPTY")
1409
+ return key, labels
1410
+
1411
+ elif key == "ignore_punct":
1412
+ if val.strip().lower() == "false":
1413
+ return key, False
1414
+ else:
1415
+ return key, True
1416
+
1417
+ elif key == "focus":
1418
+ if val.strip().lower() == "system":
1419
+ return key, "system"
1420
+ else:
1421
+ return key, "target"
1422
+
1423
+ elif key == "weights":
1424
+ if val == "default":
1425
+ return key, {"TP" : {"TP" : 1},
1426
+ "FP" : {"FP" : 1},
1427
+ "FN" : {"FN" : 1},
1428
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
1429
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
1430
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
1431
+ else:
1432
+ formulas = val.split(",")
1433
+ weights = {}
1434
+
1435
+ #For each given formula, i.e., for each error type
1436
+ for f in formulas:
1437
+
1438
+ #Match error type as string-initial letters before equal sign =
1439
+ error_type = re.match(r"\s*(?P<Error>\w+)\s*=", f)
1440
+ if error_type == None:
1441
+ print("WARNING: No error type found in weight formula '{0}'.".format(f))
1442
+ continue
1443
+ else:
1444
+ error_type = error_type.group("Error")
1445
+
1446
+ weights[error_type] = {}
1447
+
1448
+ #Match weight for TP
1449
+ w_tp = re.search(r"(?P<TP>\d*\.?\d+)\s*\*?\s*TP", f)
1450
+ if w_tp == None:
1451
+ print("WARNING: Missing weight for TP for error type {0}. Set to 0.".format(error_type))
1452
+ weights[error_type]["TP"] = 0
1453
+ else:
1454
+ try:
1455
+ w_tp = w_tp.group("TP")
1456
+ w_tp = float(w_tp)
1457
+ weights[error_type]["TP"] = w_tp
1458
+ except ValueError:
1459
+ print("WARNING: Weight for TP for error type {0} is not a number. Set to 0.".format(error_type))
1460
+ weights[error_type]["TP"] = 0
1461
+
1462
+ #Match weight for FP
1463
+ w_fp = re.search(r"(?P<FP>\d*\.?\d+)\s*\*?\s*FP", f)
1464
+ if w_fp == None:
1465
+ print("WARNING: Missing weight for FP for error type {0}. Set to 0.".format(error_type))
1466
+ weights[error_type]["FP"] = 0
1467
+ else:
1468
+ try:
1469
+ w_fp = w_fp.group("FP")
1470
+ w_fp = float(w_fp)
1471
+ weights[error_type]["FP"] = w_fp
1472
+ except ValueError:
1473
+ print("WARNING: Weight for FP for error type {0} is not a number. Set to 0.".format(error_type))
1474
+ weights[error_type]["FP"] = 0
1475
+
1476
+ #Match weight for FP
1477
+ w_fn = re.search(r"(?P<FN>\d*\.?\d+)\s*\*?\s*FN", f)
1478
+ if w_fn == None:
1479
+ print("WARNING: Missing weight for FN for error type {0}. Set to 0.".format(error_type))
1480
+ weights[error_type]["FN"] = 0
1481
+ else:
1482
+ try:
1483
+ w_fn = w_fn.group("FN")
1484
+ w_fn = float(w_fn)
1485
+ weights[error_type]["FN"] = w_fn
1486
+ except ValueError:
1487
+ print("WARNING: Weight for FN for error type {0} is not a number. Set to 0.".format(error_type))
1488
+ weights[error_type]["FN"] = 0
1489
+ if weights:
1490
+ #Add default weights for traditional categories if needed
1491
+ if not "TP" in weights:
1492
+ weights["TP"] = {"TP" : 1}
1493
+ if not "FP" in weights:
1494
+ weights["FP"] = {"FP" : 1}
1495
+ if not "FN" in weights:
1496
+ weights["FN"] = {"FN" : 1}
1497
+ return key, weights
1498
+ else:
1499
+ print("WARNING: No valid weights found. Using default weights.")
1500
+ return key, {"TP" : {"TP" : 1},
1501
+ "FP" : {"FP" : 1},
1502
+ "FN" : {"FN" : 1},
1503
+ "LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
1504
+ "BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
1505
+ "LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
1506
+
1507
+ elif key == "eval_method":
1508
+ available_methods = ["traditional", "fair", "weighted"]
1509
+ if val == "all":
1510
+ return key, available_methods
1511
+ else:
1512
+ methods = []
1513
+ for m in available_methods:
1514
+ if m in [v.strip() for v in val.split(",")
1515
+ if v.strip() and v.strip().lower() in available_methods]:
1516
+ methods.append(m)
1517
+ if methods:
1518
+ return key, methods
1519
+ else:
1520
+ print("WARNING: No evaluation method specified. Applying all methods.")
1521
+ return key, available_methods
1522
+
1523
+ #############################
1524
+
1525
+ config = dict()
1526
+
1527
+ f = open(config_file, mode="r", encoding="utf-8")
1528
+
1529
+ for line in f:
1530
+
1531
+ line = line.strip()
1532
+
1533
+ #Skip empty lines and comments
1534
+ if not line or line.startswith("#"):
1535
+ continue
1536
+
1537
+ line = line.split("=")
1538
+ key = line[0].strip()
1539
+ val = "=".join(line[1:]).strip()
1540
+
1541
+ #Store original paths of input files
1542
+ if key in ["target_in", "system_in"]:
1543
+ print("{0}: {1}".format(key, val))
1544
+ config[key] = val
1545
+
1546
+ #Parse config
1547
+ key, val = _parse_config(key, val)
1548
+
1549
+ #Skip illegal configs
1550
+ if key is None or val is None:
1551
+ continue
1552
+
1553
+ #Warn before overwriting duplicate config items.
1554
+ if key in config:
1555
+ print("WARNING: duplicate config item '{0}' found.".format(key))
1556
+
1557
+ config[key] = val
1558
+
1559
+ f.close()
1560
+
1561
+ #Stop evaluation if either target or system files are missing
1562
+ if not "target_files" in config or not "system_files" in config:
1563
+ print("ERROR: Cannot evaluate without target AND system file(s). Quitting.")
1564
+ return None
1565
+
1566
+ #Output to sys.stdout if no evaluation file is specified
1567
+ elif config.get("eval_out", None) == None:
1568
+ config["eval_out"] = sys.stdout
1569
+ #Otherwise open eval file
1570
+ else:
1571
+ config["eval_out"] = open(config.get("eval_out"), mode="w", encoding="utf-8")
1572
+
1573
+ #Set labels to 'all' if no specific labels are given
1574
+ if config.get("labels", None) == None:
1575
+ config["labels"] = ["all"]
1576
+
1577
+ if config.get("eval_method", None) == None:
1578
+ config["eval_method"] = ["traditional", "fair", "weighted"]
1579
+ if not config.get("weights", {}) and "weighted" in config.get("eval_method"):
1580
+ if not "fair" in config["eval_method"]:
1581
+ config["eval_method"].append("fair")
1582
+ del config["eval_method"][config["eval_method"].index("weighted")]
1583
+
1584
+ #Output settings at the top of evaluation file
1585
+ print("### Evaluation settings:", file=config.get("eval_out"))
1586
+ for key in sorted(config.keys()):
1587
+ if key in ["target_files", "system_files", "eval_out"]:
1588
+ continue
1589
+ print("{0}: {1}".format(key, config.get(key)), file=config.get("eval_out"))
1590
+ print(file=config.get("eval_out"))
1591
+
1592
+ return config
1593
+
1594
+ ###########################
1595
+
1596
+ if __name__ == '__main__':
1597
+ parser = argparse.ArgumentParser()
1598
+ parser.add_argument('--config', help='Configuration File', required=True)
1599
+
1600
+ args = parser.parse_args()
1601
+
1602
+ #Read config file into dict
1603
+ config = read_config(args.config)
1604
+
1605
+ #Create empty eval dict
1606
+ eval_dict = {"overall" : {"traditional" : {}, "fair" : {}},
1607
+ "per_label" : {"traditional" : {}, "fair" : {}},
1608
+ "conf" : {}}
1609
+ for method in config.get("eval_method", ["traditional", "fair"]):
1610
+ eval_dict["overall"][method] = {}
1611
+ eval_dict["per_label"][method] = {}
1612
+
1613
+ #Create dict to count target annotations
1614
+ config["data_stats"] = {}
1615
+
1616
+ #Get system and target files to compare
1617
+ #The files must have the same name to be compared
1618
+ file_pairs = []
1619
+ for t in config.get("target_files", []):
1620
+ s = [f for f in config.get("system_files", [])
1621
+ if os.path.split(t)[-1] == os.path.split(f)[-1]]
1622
+ if s:
1623
+ file_pairs.append((t, s[0]))
1624
+
1625
+ #Go through target and system files in parallel
1626
+ for target_file, system_file in file_pairs:
1627
+
1628
+ #For each sentence pair
1629
+ for target_sentence, system_sentence in zip(get_sentences(target_file),
1630
+ get_sentences(system_file)):
1631
+
1632
+ #Get spans
1633
+ target_spans = get_spans(target_sentence, **config)
1634
+ system_spans = get_spans(system_sentence, **config)
1635
+
1636
+ #Count target annotations for simple statistics.
1637
+ #Result is stored in data_stats key of config dict.
1638
+ annotation_stats(target_spans, **config)
1639
+
1640
+ #Evaluate spans
1641
+ sent_counts = compare_spans(target_spans, system_spans,
1642
+ config.get("focus", "target"))
1643
+
1644
+ #Add results to eval dict
1645
+ eval_dict = add_dict(eval_dict, sent_counts)
1646
+
1647
+ #Calculate overall results
1648
+ eval_dict = calculate_results(eval_dict, **config)
1649
+
1650
+ #Output results
1651
+ output_results(eval_dict, **config)
FairEval.py CHANGED
@@ -57,8 +57,22 @@ For the computation of the fair metrics from the error count please refer to: ht
57
  Args:
58
  predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
59
  references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
60
- mode: 'fair' or 'traditional'. Controls the desired output. 'Traditional' is equivalent to seqeval's metrics. The default value is 'fair'.
61
- error_format: 'count' or 'proportion'. Controls the desired output for TP, FP, BE, LE, etc. 'count' gives the absolute count per parameter. 'proportion' gives the precentage with respect to the total errors that each parameter represents. Default value is 'count'.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
63
  suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
64
  scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
@@ -67,14 +81,14 @@ Returns:
67
  - Overall error parameter count (or ratio) and resulting scores.
68
  - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
69
 
70
- If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair', TP remain the same,
71
- FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
72
 
73
  Examples:
74
  >>> faireval = evaluate.load("hpi-dhc/FairEval")
75
  >>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
76
  >>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
77
- >>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count)
78
  >>> print(results)
79
  {'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
80
  'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
 
57
  Args:
58
  predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
59
  references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
60
+ mode: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
61
+ - 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
62
+ - 'fair': default fair score calculation.
63
+ - 'weighted': custom score calculation with the weights passed.
64
+ weights: dictionary with the weight of each error for the custom score calculation.
65
+ If none is passed and the mode is set to 'weighted', the following is used:
66
+ {"TP": {"TP": 1},
67
+ "FP": {"FP": 1},
68
+ "FN": {"FN": 1},
69
+ "LE": {"TP": 0, "FP": 0.5, "FN": 0.5},
70
+ "BE": {"TP": 0.5, "FP": 0.25, "FN": 0.25},
71
+ "LBE": {"TP": 0, "FP": 0.5, "FN": 0.5}}
72
+ error_format: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc:. Default value is 'count'.
73
+ - 'count': absolute count of each parameter.
74
+ - 'error_ratio': precentage with respect to the total errors that each parameter represents.
75
+ - 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
76
  zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
77
  suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
78
  scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
 
81
  - Overall error parameter count (or ratio) and resulting scores.
82
  - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
83
 
84
+ If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or
85
+ 'weighted', TP remains the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
86
 
87
  Examples:
88
  >>> faireval = evaluate.load("hpi-dhc/FairEval")
89
  >>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
90
  >>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
91
+ >>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count')
92
  >>> print(results)
93
  {'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
94
  'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
HFFE_use_cases.pdf ADDED
Binary file (86.4 kB). View file
 
README.md CHANGED
@@ -21,7 +21,10 @@ To address these issues, this metric provides an implementation of FairEval, pro
21
  ## How to Use
22
  FairEval outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
23
  spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
24
- switching the argument **mode**.
 
 
 
25
 
26
  The minimal example is:
27
 
@@ -39,8 +42,15 @@ Predicted sentences must have the same number of tokens as the references.
39
  - **references** *(list)*: list of ground truth reference labels.
40
 
41
  The optional arguments are:
42
- - **mode** *(str)*: 'fair' or 'traditional'. Controls the desired output. 'Traditional' is equivalent to seqeval's metrics. The default value is 'fair'.
43
- - **error_format** *(str)*: 'count' or 'proportion'. Controls the desired output for TP, FP, BE, LE, etc. 'count' gives the absolute count per parameter. 'proportion' gives the precentage with respect to the total errors that each parameter represents. Default value is 'count'.
 
 
 
 
 
 
 
44
  - **zero_division** *(str)*: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
45
  - **suffix** *(boolean)*: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
46
  - **scheme** *(str)*: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
@@ -50,10 +60,11 @@ A dictionary with:
50
  - Overall error parameter count (or ratio) and resulting scores.
51
  - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
52
 
53
- If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair', TP remain the same,
54
- FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
55
 
56
  ### Examples
 
57
  Considering the following input annotated sentences:
58
  ```python
59
  >>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
 
21
  ## How to Use
22
  FairEval outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
23
  spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
24
+ switching the argument **mode**.
25
+
26
+ The user can also choose to see the metric parameters (TP, FP...) as absolute count, as a percentage with respect to the
27
+ total number of errors or with respect to the total number of ground truth entities through the argument **error_format**.
28
 
29
  The minimal example is:
30
 
 
42
  - **references** *(list)*: list of ground truth reference labels.
43
 
44
  The optional arguments are:
45
+ - **mode** *(str)*: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
46
+ - 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
47
+ - 'fair': default fair score calculation.
48
+ - 'weighted': custom score calculation with the weights passed.
49
+ - **weights** *(dict)*: dictionary with the weight of each error for the custom score calculation.
50
+ - **error_format** *(str)*: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc. Default value is 'count'.
51
+ - 'count': absolute count of each parameter.
52
+ - 'error_ratio': precentage with respect to the total errors that each parameter represents.
53
+ - 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
54
  - **zero_division** *(str)*: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
55
  - **suffix** *(boolean)*: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
56
  - **scheme** *(str)*: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
 
60
  - Overall error parameter count (or ratio) and resulting scores.
61
  - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
62
 
63
+ If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or 'weighted',
64
+ TP remain the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
65
 
66
  ### Examples
67
+ A comprehensive set of side-by-side examples is shown in.
68
  Considering the following input annotated sentences:
69
  ```python
70
  >>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']