Update docs
Browse files- .ipynb_checkpoints/FairEval-checkpoint.py +229 -0
- .ipynb_checkpoints/FairEvalUtils-checkpoint.py +1651 -0
- FairEval.py +19 -5
- HFFE_use_cases.pdf +0 -0
- README.md +16 -5
.ipynb_checkpoints/FairEval-checkpoint.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# huggingface packages
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
# faireval functions
|
20 |
+
from .FairEvalUtils import *
|
21 |
+
|
22 |
+
# packages to manage input formats
|
23 |
+
import importlib
|
24 |
+
from typing import List, Optional, Union
|
25 |
+
from seqeval.metrics.v1 import check_consistent_length
|
26 |
+
from seqeval.scheme import Entities, Token, auto_detect
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{ortmann2022,
|
30 |
+
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
|
31 |
+
author = {Katrin Ortmann},
|
32 |
+
url = {https://aclanthology.org/2022.lrec-1.150},
|
33 |
+
year = {2022},
|
34 |
+
date = {2022-06-21},
|
35 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
|
36 |
+
pages = {1400-1407},
|
37 |
+
publisher = {European Language Resources Association},
|
38 |
+
address = {Marseille, France},
|
39 |
+
pubstate = {published},
|
40 |
+
type = {inproceedings}
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
New evaluation method that more accurately reflects true annotation quality by ensuring that every error is counted
|
46 |
+
only once - avoiding the penalty to close-to-target annotations happening in traditional evaluation.
|
47 |
+
In addition to the traditional categories of true positives (TP), false positives (FP), and false negatives
|
48 |
+
(FN), the new method takes into account more fine-grained error types: labeling errors (LE), boundary errors (BE),
|
49 |
+
and labeling-boundary errors (LBE).
|
50 |
+
"""
|
51 |
+
|
52 |
+
_KWARGS_DESCRIPTION = """
|
53 |
+
Outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
|
54 |
+
spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
|
55 |
+
switching the argument 'mode'.
|
56 |
+
For the computation of the fair metrics from the error count please refer to: https://aclanthology.org/2022.lrec-1.150.pdf
|
57 |
+
Args:
|
58 |
+
predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
|
59 |
+
references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
|
60 |
+
mode: 'fair' or 'traditional'. Controls the desired output. 'Traditional' is equivalent to seqeval's metrics. The default value is 'fair'.
|
61 |
+
error_format: 'count' or 'proportion'. Controls the desired output for TP, FP, BE, LE, etc. 'count' gives the absolute count per parameter. 'proportion' gives the precentage with respect to the total errors that each parameter represents. Default value is 'count'.
|
62 |
+
zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
|
63 |
+
suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
|
64 |
+
scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
|
65 |
+
Returns:
|
66 |
+
A dictionary with:
|
67 |
+
- Overall error parameter count (or ratio) and resulting scores.
|
68 |
+
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
|
69 |
+
|
70 |
+
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair', TP remain the same,
|
71 |
+
FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
72 |
+
|
73 |
+
Examples:
|
74 |
+
>>> faireval = evaluate.load("hpi-dhc/FairEval")
|
75 |
+
>>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
76 |
+
>>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
77 |
+
>>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count)
|
78 |
+
>>> print(results)
|
79 |
+
{'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
|
80 |
+
'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
|
81 |
+
'overall_precision': 0.6666666666666666,
|
82 |
+
'overall_recall': 0.6666666666666666,
|
83 |
+
'overall_f1': 0.6666666666666666,
|
84 |
+
'TP': 1,
|
85 |
+
'FP': 0,
|
86 |
+
'FN': 0,
|
87 |
+
'LE': 0,
|
88 |
+
'BE': 1,
|
89 |
+
'LBE': 0}
|
90 |
+
"""
|
91 |
+
|
92 |
+
|
93 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
94 |
+
class FairEvaluation(evaluate.Metric):
|
95 |
+
|
96 |
+
def _info(self):
|
97 |
+
return evaluate.MetricInfo(
|
98 |
+
# This is the description that will appear on the modules page.
|
99 |
+
module_type="metric",
|
100 |
+
description=_DESCRIPTION,
|
101 |
+
citation=_CITATION,
|
102 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
103 |
+
# This defines the format of each prediction and reference
|
104 |
+
features=datasets.Features({
|
105 |
+
"predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
106 |
+
"references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
107 |
+
}),
|
108 |
+
# Homepage of the module for documentation
|
109 |
+
homepage="https://huggingface.co/spaces/illorca/fairevaluation",
|
110 |
+
# Additional links to the codebase or references
|
111 |
+
codebase_urls=["https://github.com/rubcompling/FairEval#acknowledgement"],
|
112 |
+
reference_urls=["https://aclanthology.org/2022.lrec-1.150.pdf"]
|
113 |
+
)
|
114 |
+
|
115 |
+
def _compute(
|
116 |
+
self,
|
117 |
+
predictions,
|
118 |
+
references,
|
119 |
+
suffix: bool = False,
|
120 |
+
scheme: Optional[str] = None,
|
121 |
+
mode: Optional[str] = 'fair',
|
122 |
+
error_format: Optional[str] = 'count',
|
123 |
+
zero_division: Union[str, int] = "warn",
|
124 |
+
):
|
125 |
+
"""Returns the error parameter counts and scores"""
|
126 |
+
# (1) SEQEVAL INPUT MANAGEMENT
|
127 |
+
if scheme is not None:
|
128 |
+
try:
|
129 |
+
scheme_module = importlib.import_module("seqeval.scheme")
|
130 |
+
scheme = getattr(scheme_module, scheme)
|
131 |
+
except AttributeError:
|
132 |
+
raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}")
|
133 |
+
|
134 |
+
y_true = references
|
135 |
+
y_pred = predictions
|
136 |
+
|
137 |
+
check_consistent_length(y_true, y_pred)
|
138 |
+
|
139 |
+
if scheme is None or not issubclass(scheme, Token):
|
140 |
+
scheme = auto_detect(y_true, suffix)
|
141 |
+
|
142 |
+
true_spans = Entities(y_true, scheme, suffix).entities
|
143 |
+
pred_spans = Entities(y_pred, scheme, suffix).entities
|
144 |
+
|
145 |
+
# (2) TRANSFORM FROM SEQEVAL TO FAIREVAL SPAN FORMAT
|
146 |
+
true_spans = seq_to_fair(true_spans)
|
147 |
+
pred_spans = seq_to_fair(pred_spans)
|
148 |
+
|
149 |
+
# (3) COUNT ERRORS AND CALCULATE SCORES
|
150 |
+
total_errors = compare_spans([], []) # initialize empty error count dictionary
|
151 |
+
|
152 |
+
for i in range(len(true_spans)):
|
153 |
+
sentence_errors = compare_spans(true_spans[i], pred_spans[i])
|
154 |
+
total_errors = add_dict(total_errors, sentence_errors)
|
155 |
+
|
156 |
+
results = calculate_results(total_errors)
|
157 |
+
del results['conf']
|
158 |
+
|
159 |
+
# (4) SELECT OUTPUT MODE AND REFORMAT AS SEQEVAL HUGGINGFACE OUTPUT
|
160 |
+
output = {}
|
161 |
+
total_trad_errors = results['overall']['traditional']['FP'] + results['overall']['traditional']['FN']
|
162 |
+
total_fair_errors = results['overall']['fair']['FP'] + results['overall']['fair']['FN'] + \
|
163 |
+
results['overall']['fair']['LE'] + results['overall']['fair']['BE'] + \
|
164 |
+
results['overall']['fair']['LBE']
|
165 |
+
|
166 |
+
assert mode in ['traditional', 'fair'], 'mode must be \'traditional\' or \'fair\''
|
167 |
+
assert error_format in ['count', 'proportion'], 'error_format must be \'count\' or \'proportion\''
|
168 |
+
|
169 |
+
if mode == 'traditional':
|
170 |
+
for k, v in results['per_label'][mode].items():
|
171 |
+
if error_format == 'count':
|
172 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
173 |
+
'FP': v['FP'], 'FN': v['FN']}
|
174 |
+
elif error_format == 'proportion':
|
175 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
176 |
+
'FP': v['FP'] / total_trad_errors, 'FN': v['FN'] / total_trad_errors}
|
177 |
+
elif mode == 'fair':
|
178 |
+
for k, v in results['per_label'][mode].items():
|
179 |
+
if error_format == 'count':
|
180 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
181 |
+
'FP': v['FP'], 'FN': v['FN'], 'LE': v['LE'], 'BE': v['BE'], 'LBE': v['LBE']}
|
182 |
+
elif error_format == 'proportion':
|
183 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
184 |
+
'FP': v['FP'] / total_fair_errors, 'FN': v['FN'] / total_fair_errors,
|
185 |
+
'LE': v['LE'] / total_fair_errors, 'BE': v['BE'] / total_fair_errors,
|
186 |
+
'LBE': v['LBE'] / total_fair_errors}
|
187 |
+
|
188 |
+
output['overall_precision'] = results['overall'][mode]['Prec']
|
189 |
+
output['overall_recall'] = results['overall'][mode]['Rec']
|
190 |
+
output['overall_f1'] = results['overall'][mode]['F1']
|
191 |
+
|
192 |
+
if mode == 'traditional':
|
193 |
+
output['TP'] = results['overall'][mode]['TP']
|
194 |
+
output['FP'] = results['overall'][mode]['FP']
|
195 |
+
output['FN'] = results['overall'][mode]['FN']
|
196 |
+
if error_format == 'proportion':
|
197 |
+
output['FP'] = output['FP'] / total_trad_errors
|
198 |
+
output['FN'] = output['FN'] / total_trad_errors
|
199 |
+
elif mode == 'fair':
|
200 |
+
output['TP'] = results['overall'][mode]['TP']
|
201 |
+
output['FP'] = results['overall'][mode]['FP']
|
202 |
+
output['FN'] = results['overall'][mode]['FN']
|
203 |
+
output['LE'] = results['overall'][mode]['LE']
|
204 |
+
output['BE'] = results['overall'][mode]['BE']
|
205 |
+
output['LBE'] = results['overall'][mode]['LBE']
|
206 |
+
if error_format == 'proportion':
|
207 |
+
output['FP'] = output['FP'] / total_fair_errors
|
208 |
+
output['FN'] = output['FN'] / total_fair_errors
|
209 |
+
output['LE'] = output['LE'] / total_fair_errors
|
210 |
+
output['BE'] = output['BE'] / total_fair_errors
|
211 |
+
output['LBE'] = output['LBE'] / total_fair_errors
|
212 |
+
|
213 |
+
return output
|
214 |
+
|
215 |
+
|
216 |
+
def seq_to_fair(seq_sentences):
|
217 |
+
"Transforms input anotated sentences from seqeval span format to FairEval span format"
|
218 |
+
out = []
|
219 |
+
for seq_sentence in seq_sentences:
|
220 |
+
sentence = []
|
221 |
+
for entity in seq_sentence:
|
222 |
+
span = str(entity).replace('(', '').replace(')', '').replace(' ', '').split(',')
|
223 |
+
span = span[1:]
|
224 |
+
span[-1] = int(span[-1]) - 1
|
225 |
+
span[1] = int(span[1])
|
226 |
+
span.append({i for i in range(span[1], span[2] + 1)})
|
227 |
+
sentence.append(span)
|
228 |
+
out.append(sentence)
|
229 |
+
return out
|
.ipynb_checkpoints/FairEvalUtils-checkpoint.py
ADDED
@@ -0,0 +1,1651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
'''
|
4 |
+
Created 09/2021
|
5 |
+
|
6 |
+
@author: Katrin Ortmann
|
7 |
+
'''
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import re
|
13 |
+
from typing import Iterable
|
14 |
+
from io import TextIOWrapper
|
15 |
+
from copy import deepcopy
|
16 |
+
|
17 |
+
#####################################
|
18 |
+
|
19 |
+
def precision(evaldict, version="traditional", weights={}):
|
20 |
+
"""
|
21 |
+
Calculate traditional, fair or weighted precision value.
|
22 |
+
|
23 |
+
Precision is calculated as the number of true positives
|
24 |
+
divided by the number of true positives plus false positives
|
25 |
+
plus (optionally) additional error types.
|
26 |
+
|
27 |
+
Input:
|
28 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
29 |
+
{"TP" : 10, "FP" : 2, "LE" : 1, ...}
|
30 |
+
|
31 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
32 |
+
false positives (key: FP) are required.
|
33 |
+
The 'fair' evaluation is based on true positives (TP),
|
34 |
+
false positives (FP), labeling errors (LE), boundary errors (BE)
|
35 |
+
and labeling-boundary errors (LBE).
|
36 |
+
The 'weighted' evaluation can include any error type
|
37 |
+
that is given as key in the weight dictionary.
|
38 |
+
For missing keys, the count is set to 0.
|
39 |
+
|
40 |
+
- The desired evaluation method. Options are 'traditional',
|
41 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
42 |
+
'weighted' is identical to 'fair'.
|
43 |
+
|
44 |
+
- A weight dictionary to specify how much an error type should
|
45 |
+
count as one of the traditional error types (or as true positive).
|
46 |
+
Per default, every traditional error is counted as one error (or true positive)
|
47 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
48 |
+
|
49 |
+
{"TP" : {"TP" : 1},
|
50 |
+
"FP" : {"FP" : 1},
|
51 |
+
"FN" : {"FN" : 1},
|
52 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
53 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
54 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
55 |
+
|
56 |
+
Other suggested weights to count boundary errors as half true positives:
|
57 |
+
|
58 |
+
{"TP" : {"TP" : 1},
|
59 |
+
"FP" : {"FP" : 1},
|
60 |
+
"FN" : {"FN" : 1},
|
61 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
62 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
63 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
64 |
+
|
65 |
+
Or to include different types of boundary errors:
|
66 |
+
|
67 |
+
{"TP" : {"TP" : 1},
|
68 |
+
"FP" : {"FP" : 1},
|
69 |
+
"FN" : {"FN" : 1},
|
70 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
71 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
72 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
73 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
74 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
75 |
+
|
76 |
+
Output:
|
77 |
+
The precision for the given input values.
|
78 |
+
In case of a ZeroDivisionError, the precision is set to 0.
|
79 |
+
|
80 |
+
"""
|
81 |
+
traditional_weights = {
|
82 |
+
"TP" : {"TP" : 1},
|
83 |
+
"FP" : {"FP" : 1},
|
84 |
+
"FN" : {"FN" : 1}
|
85 |
+
}
|
86 |
+
default_fair_weights = {
|
87 |
+
"TP" : {"TP" : 1},
|
88 |
+
"FP" : {"FP" : 1},
|
89 |
+
"FN" : {"FN" : 1},
|
90 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
91 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
92 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
93 |
+
}
|
94 |
+
try:
|
95 |
+
tp = 0
|
96 |
+
fp = 0
|
97 |
+
|
98 |
+
#Set default weights for traditional evaluation
|
99 |
+
if version == "traditional":
|
100 |
+
weights = traditional_weights
|
101 |
+
|
102 |
+
#Set weights to default
|
103 |
+
#for fair evaluation or if no weights are given
|
104 |
+
elif version == "fair" or not weights:
|
105 |
+
weights = default_fair_weights
|
106 |
+
|
107 |
+
#Add weighted errors to true positive count
|
108 |
+
tp += sum(
|
109 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
110 |
+
)
|
111 |
+
|
112 |
+
#Add weighted errors to false positive count
|
113 |
+
fp += sum(
|
114 |
+
[w.get("FP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
115 |
+
)
|
116 |
+
|
117 |
+
#Calculate precision
|
118 |
+
return tp / (tp + fp)
|
119 |
+
|
120 |
+
#Output 0 if there is neither true nor false positives
|
121 |
+
except ZeroDivisionError:
|
122 |
+
return 0.0
|
123 |
+
|
124 |
+
######################
|
125 |
+
|
126 |
+
def recall(evaldict, version="traditional", weights={}):
|
127 |
+
"""
|
128 |
+
Calculate traditional, fair or weighted recall value.
|
129 |
+
|
130 |
+
Recall is calculated as the number of true positives
|
131 |
+
divided by the number of true positives plus false negatives
|
132 |
+
plus (optionally) additional error types.
|
133 |
+
|
134 |
+
Input:
|
135 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
136 |
+
{"TP" : 10, "FN" : 2, "LE" : 1, ...}
|
137 |
+
|
138 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
139 |
+
false negatives (key: FN) are required.
|
140 |
+
The 'fair' evaluation is based on true positives (TP),
|
141 |
+
false negatives (FN), labeling errors (LE), boundary errors (BE)
|
142 |
+
and labeling-boundary errors (LBE).
|
143 |
+
The 'weighted' evaluation can include any error type
|
144 |
+
that is given as key in the weight dictionary.
|
145 |
+
For missing keys, the count is set to 0.
|
146 |
+
|
147 |
+
- The desired evaluation method. Options are 'traditional',
|
148 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
149 |
+
'weighted' is identical to 'fair'.
|
150 |
+
|
151 |
+
- A weight dictionary to specify how much an error type should
|
152 |
+
count as one of the traditional error types (or as true positive).
|
153 |
+
Per default, every traditional error is counted as one error (or true positive)
|
154 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
155 |
+
|
156 |
+
{"TP" : {"TP" : 1},
|
157 |
+
"FP" : {"FP" : 1},
|
158 |
+
"FN" : {"FN" : 1},
|
159 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
160 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
161 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
162 |
+
|
163 |
+
Other suggested weights to count boundary errors as half true positives:
|
164 |
+
|
165 |
+
{"TP" : {"TP" : 1},
|
166 |
+
"FP" : {"FP" : 1},
|
167 |
+
"FN" : {"FN" : 1},
|
168 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
169 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
170 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
171 |
+
|
172 |
+
Or to include different types of boundary errors:
|
173 |
+
|
174 |
+
{"TP" : {"TP" : 1},
|
175 |
+
"FP" : {"FP" : 1},
|
176 |
+
"FN" : {"FN" : 1},
|
177 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
178 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
179 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
180 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
181 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
182 |
+
|
183 |
+
Output:
|
184 |
+
The recall for the given input values.
|
185 |
+
In case of a ZeroDivisionError, the recall is set to 0.
|
186 |
+
|
187 |
+
"""
|
188 |
+
traditional_weights = {
|
189 |
+
"TP" : {"TP" : 1},
|
190 |
+
"FP" : {"FP" : 1},
|
191 |
+
"FN" : {"FN" : 1}
|
192 |
+
}
|
193 |
+
default_fair_weights = {
|
194 |
+
"TP" : {"TP" : 1},
|
195 |
+
"FP" : {"FP" : 1},
|
196 |
+
"FN" : {"FN" : 1},
|
197 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
198 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
199 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
200 |
+
}
|
201 |
+
try:
|
202 |
+
tp = 0
|
203 |
+
fn = 0
|
204 |
+
|
205 |
+
#Set default weights for traditional evaluation
|
206 |
+
if version == "traditional":
|
207 |
+
weights = traditional_weights
|
208 |
+
|
209 |
+
#Set weights to default
|
210 |
+
#for fair evaluation or if no weights are given
|
211 |
+
elif version == "fair" or not weights:
|
212 |
+
weights = default_fair_weights
|
213 |
+
|
214 |
+
#Add weighted errors to true positive count
|
215 |
+
tp += sum(
|
216 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
217 |
+
)
|
218 |
+
|
219 |
+
#Add weighted errors to false negative count
|
220 |
+
fn += sum(
|
221 |
+
[w.get("FN", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
222 |
+
)
|
223 |
+
|
224 |
+
#Calculate recall
|
225 |
+
return tp / (tp + fn)
|
226 |
+
|
227 |
+
#Return zero if there are neither true positives nor false negatives
|
228 |
+
except ZeroDivisionError:
|
229 |
+
return 0.0
|
230 |
+
|
231 |
+
######################
|
232 |
+
|
233 |
+
def fscore(evaldict):
|
234 |
+
"""
|
235 |
+
Calculates F1-Score from given precision and recall values.
|
236 |
+
|
237 |
+
Input: A dictionary with a precision (key: Prec) and recall (key: Rec) value.
|
238 |
+
Output: The F1-Score. In case of a ZeroDivisionError, the F1-Score is set to 0.
|
239 |
+
"""
|
240 |
+
try:
|
241 |
+
return 2 * (evaldict.get("Prec", 0) * evaldict.get("Rec", 0)) \
|
242 |
+
/ (evaldict.get("Prec", 0) + evaldict.get("Rec", 0))
|
243 |
+
except ZeroDivisionError:
|
244 |
+
return 0.0
|
245 |
+
|
246 |
+
######################
|
247 |
+
|
248 |
+
def overlap_type(span1, span2):
|
249 |
+
"""
|
250 |
+
Determine the error type of two (overlapping) spans.
|
251 |
+
|
252 |
+
The function checks, if and how span1 and span2 overlap.
|
253 |
+
The first span serves as the basis against which the second
|
254 |
+
span is evaluated.
|
255 |
+
|
256 |
+
span1 ---XXXX---
|
257 |
+
span2 ---XXXX--- TP (identical)
|
258 |
+
span2 ----XXXX-- BEO (overlap)
|
259 |
+
span2 --XXXX---- BEO (overlap)
|
260 |
+
span2 ----XX---- BES (smaller)
|
261 |
+
span2 ---XX----- BES (smaller)
|
262 |
+
span2 --XXXXXX-- BEL (larger)
|
263 |
+
span2 --XXXXX--- BEL (larger)
|
264 |
+
span2 -X-------- False (no overlap)
|
265 |
+
|
266 |
+
Input:
|
267 |
+
Tuples (beginSpan1, endSpan1) and (beginSpan2, endSpan2),
|
268 |
+
where begin and end are the indices of the corresponding tokens.
|
269 |
+
|
270 |
+
Output:
|
271 |
+
Either one of the following strings
|
272 |
+
- "TP" = span1 and span2 are identical, i.e., actually no error here
|
273 |
+
- "BES" = span2 is shorter and contained within span1 (with at most one identical boundary)
|
274 |
+
- "BEL" = span2 is longer and contains span1 (with at most one identical boundary)
|
275 |
+
- "BEO" = span1 and span2 overlap with no identical boundary
|
276 |
+
or False if span1 and span2 do not overlap.
|
277 |
+
"""
|
278 |
+
#Identical spans
|
279 |
+
if span1[0] == span2[0] and span1[1] == span2[1]:
|
280 |
+
return "TP"
|
281 |
+
|
282 |
+
#Start of spans is identical
|
283 |
+
if span1[0] == span2[0]:
|
284 |
+
#End of 2 is within span1
|
285 |
+
if span2[1] >= span1[0] and span2[1] < span1[1]:
|
286 |
+
return "BES"
|
287 |
+
#End of 2 is behind span1
|
288 |
+
else:
|
289 |
+
return "BEL"
|
290 |
+
#Start of 2 is before span1
|
291 |
+
elif span2[0] < span1[0]:
|
292 |
+
#End is before span 1
|
293 |
+
if span2[1] < span1[0]:
|
294 |
+
return False
|
295 |
+
#End is within span1
|
296 |
+
elif span2[1] < span1[1]:
|
297 |
+
return "BEO"
|
298 |
+
#End is identical or to the right
|
299 |
+
else:
|
300 |
+
return "BEL"
|
301 |
+
#Start of 2 is within span1
|
302 |
+
elif span2[0] >= span1[0] and span2[0] <= span1[1]:
|
303 |
+
#End of 2 is wihtin span1
|
304 |
+
if span2[1] <= span1[1]:
|
305 |
+
return "BES"
|
306 |
+
#End of 2 is to the right
|
307 |
+
else:
|
308 |
+
return "BEO"
|
309 |
+
#Start of 2 is behind span1
|
310 |
+
else:
|
311 |
+
return False
|
312 |
+
|
313 |
+
#####################################
|
314 |
+
|
315 |
+
def compare_spans(target_spans, system_spans, focus="target"):
|
316 |
+
"""
|
317 |
+
Compare system and target spans to identify correct/incorrect annotations.
|
318 |
+
|
319 |
+
The function takes a list of target spans and system spans.
|
320 |
+
Each span is a 4-tuple of
|
321 |
+
- label: the span type as string
|
322 |
+
- begin: the index of first token; equals end for spans of length 1
|
323 |
+
- end: the index of the last token; equals begin for spans of length 1
|
324 |
+
- tokens: a set of token indices included in the span
|
325 |
+
(this allows the correct evaluation of
|
326 |
+
partially and multiply overlapping spans;
|
327 |
+
to allow for changes of the token set,
|
328 |
+
the span tuple is actually implemented as a list.)
|
329 |
+
|
330 |
+
The function first performs traditional evaluation on these spans
|
331 |
+
to identify true positives, false positives, and false negatives.
|
332 |
+
Then, the additional error types for fair evaluation are determined,
|
333 |
+
following steps 1 to 4:
|
334 |
+
1. Count 1:1 mappings (TP, LE)
|
335 |
+
2. Count boundary errors (BE = BES + BEL + BEO)
|
336 |
+
3. Count labeling-boundary errors (LBE)
|
337 |
+
4. Count 1:0 and 0:1 mappings (FN, FP)
|
338 |
+
|
339 |
+
Input:
|
340 |
+
- List of target spans
|
341 |
+
- List of system spans
|
342 |
+
- Wether to focus on the system or target annotation (default: target)
|
343 |
+
|
344 |
+
Output: A dictionary containing
|
345 |
+
- the counts of TP, FP, and FN according to traditional evaluation
|
346 |
+
(per label and overall)
|
347 |
+
- the counts of TP, FP, LE, BE, BES, BEL, BEO, and FN
|
348 |
+
(per label and overall; BE = BES + BEL + BEO)
|
349 |
+
- a confusion matrix {target_label1 : {system_label1 : count,
|
350 |
+
system_label2 : count,
|
351 |
+
...},
|
352 |
+
target_label2 : ...
|
353 |
+
}
|
354 |
+
with an underscore '_' representing an empty label (FN/FP)
|
355 |
+
"""
|
356 |
+
|
357 |
+
##################################
|
358 |
+
|
359 |
+
def _max_sim(t, S):
|
360 |
+
"""
|
361 |
+
Determine the most similar span s from S for span t.
|
362 |
+
|
363 |
+
Similarity is defined as
|
364 |
+
1. the maximum number of shared tokens between s and t and
|
365 |
+
2. the minimum number of tokens only in t
|
366 |
+
If multiple spans are equally similar, the shortest s is chosen.
|
367 |
+
If still multiple spans are equally similar, the first one in the list is chosen,
|
368 |
+
which corresponds to the left-most one if sentences are read from left to right.
|
369 |
+
|
370 |
+
Input:
|
371 |
+
- Span t as 4-tuple [label, begin, end, token_set]
|
372 |
+
- List S containing > 1 spans
|
373 |
+
|
374 |
+
Output: The most similar s for t.
|
375 |
+
"""
|
376 |
+
S.sort(key=lambda s: (0-len(t[3].intersection(s[3])),
|
377 |
+
len(t[3].difference(s[3])),
|
378 |
+
len(s[3].difference(t[3])),
|
379 |
+
s[2]-s[1]))
|
380 |
+
return S[0]
|
381 |
+
|
382 |
+
##################################
|
383 |
+
|
384 |
+
traditional_error_types = ["TP", "FP", "FN"]
|
385 |
+
additional_error_types = ["LE", "BE", "BEO", "BES", "BEL", "LBE"]
|
386 |
+
|
387 |
+
#Initialize empty eval dict
|
388 |
+
eval_dict = {"overall" : {"traditional" : {err_type : 0 for err_type
|
389 |
+
in traditional_error_types},
|
390 |
+
"fair" : {err_type : 0 for err_type
|
391 |
+
in traditional_error_types + additional_error_types}},
|
392 |
+
"per_label" : {"traditional" : {},
|
393 |
+
"fair" : {}},
|
394 |
+
"conf" : {}}
|
395 |
+
|
396 |
+
#Initialize per-label dict
|
397 |
+
for s in target_spans + system_spans:
|
398 |
+
if not s[0] in eval_dict["per_label"]["traditional"]:
|
399 |
+
eval_dict["per_label"]["traditional"][s[0]] = {err_type : 0 for err_type
|
400 |
+
in traditional_error_types}
|
401 |
+
eval_dict["per_label"]["fair"][s[0]] = {err_type : 0 for err_type
|
402 |
+
in traditional_error_types + additional_error_types}
|
403 |
+
#Initialize confusion matrix
|
404 |
+
if not s[0] in eval_dict["conf"]:
|
405 |
+
eval_dict["conf"][s[0]] = {}
|
406 |
+
eval_dict["conf"]["_"] = {}
|
407 |
+
for lab in list(eval_dict["conf"])+["_"]:
|
408 |
+
for lab2 in list(eval_dict["conf"])+["_"]:
|
409 |
+
eval_dict["conf"][lab][lab2] = 0
|
410 |
+
|
411 |
+
################################################
|
412 |
+
### Traditional evaluation (overall + per label)
|
413 |
+
|
414 |
+
for t in target_spans:
|
415 |
+
#Spans in target and system annotation are true positives
|
416 |
+
if t in system_spans:
|
417 |
+
eval_dict["overall"]["traditional"]["TP"] += 1
|
418 |
+
eval_dict["per_label"]["traditional"][t[0]]["TP"] += 1
|
419 |
+
#Spans only in target annotation are false negatives
|
420 |
+
else:
|
421 |
+
eval_dict["overall"]["traditional"]["FN"] += 1
|
422 |
+
eval_dict["per_label"]["traditional"][t[0]]["FN"] += 1
|
423 |
+
for s in system_spans:
|
424 |
+
#Spans only in system annotation are false positives
|
425 |
+
if not s in target_spans:
|
426 |
+
eval_dict["overall"]["traditional"]["FP"] += 1
|
427 |
+
eval_dict["per_label"]["traditional"][s[0]]["FP"] += 1
|
428 |
+
|
429 |
+
###########################################################
|
430 |
+
### Fair evaluation (overall, per label + confusion matrix)
|
431 |
+
|
432 |
+
### Identical spans (TP and LE)
|
433 |
+
|
434 |
+
### TP
|
435 |
+
#Identify true positives (identical spans between target and system)
|
436 |
+
tps = [t for t in target_spans if t in system_spans]
|
437 |
+
for t in tps:
|
438 |
+
s = [s for s in system_spans if s == t]
|
439 |
+
if s:
|
440 |
+
s = s[0]
|
441 |
+
eval_dict["overall"]["fair"]["TP"] += 1
|
442 |
+
eval_dict["per_label"]["fair"][t[0]]["TP"] += 1
|
443 |
+
#After counting, remove from input lists
|
444 |
+
system_spans.remove(s)
|
445 |
+
target_spans.remove(t)
|
446 |
+
|
447 |
+
### LE
|
448 |
+
#Identify labeling error: identical span but different label
|
449 |
+
les = [t for t in target_spans
|
450 |
+
if any(t[0] != s[0] and t[1:3] == s[1:3] for s in system_spans)]
|
451 |
+
for t in les:
|
452 |
+
s = [s for s in system_spans if t[0] != s[0] and t[1:3] == s[1:3]]
|
453 |
+
if s:
|
454 |
+
s = s[0]
|
455 |
+
#Overall: count as one LE
|
456 |
+
eval_dict["overall"]["fair"]["LE"] += 1
|
457 |
+
#Per label: depending on focus count for target label or system label
|
458 |
+
if focus == "target":
|
459 |
+
eval_dict["per_label"]["fair"][t[0]]["LE"] += 1
|
460 |
+
elif focus == "system":
|
461 |
+
eval_dict["per_label"]["fair"][s[0]]["LE"] += 1
|
462 |
+
#Add to confusion matrix
|
463 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
464 |
+
#After counting, remove from input lists
|
465 |
+
system_spans.remove(s)
|
466 |
+
target_spans.remove(t)
|
467 |
+
|
468 |
+
### Boundary errors
|
469 |
+
|
470 |
+
#Create lists to collect matched spans
|
471 |
+
counted_target = list()
|
472 |
+
counted_system = list()
|
473 |
+
|
474 |
+
#Sort lists by span length (shortest to longest)
|
475 |
+
target_spans.sort(key=lambda t : t[2] - t[1])
|
476 |
+
system_spans.sort(key=lambda s : s[2] - s[1])
|
477 |
+
|
478 |
+
### BE
|
479 |
+
|
480 |
+
## 1. Compare input lists
|
481 |
+
#Identify boundary errors: identical label but different, overlapping span
|
482 |
+
i = 0
|
483 |
+
while i < len(target_spans):
|
484 |
+
t = target_spans[i]
|
485 |
+
|
486 |
+
#Find possible boundary errors
|
487 |
+
be = [s for s in system_spans
|
488 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
489 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
490 |
+
if not be:
|
491 |
+
i += 1
|
492 |
+
continue
|
493 |
+
|
494 |
+
#If there is more than one possible BE, take most similar one
|
495 |
+
if len(be) > 1:
|
496 |
+
s = _max_sim(t, be)
|
497 |
+
else:
|
498 |
+
s = be[0]
|
499 |
+
|
500 |
+
#Determine overlap type
|
501 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
502 |
+
|
503 |
+
#Overall: Count as BE and more fine-grained BE type
|
504 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
505 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
506 |
+
|
507 |
+
#Per-label: count as general BE and specific BE type
|
508 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
509 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
510 |
+
|
511 |
+
#Add to confusion matrix
|
512 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
513 |
+
|
514 |
+
#Remove matched spans from input list
|
515 |
+
system_spans.remove(s)
|
516 |
+
target_spans.remove(t)
|
517 |
+
|
518 |
+
#Remove matched tokens from spans
|
519 |
+
matching_tokens = t[3].intersection(s[3])
|
520 |
+
s[3] = s[3].difference(matching_tokens)
|
521 |
+
t[3] = t[3].difference(matching_tokens)
|
522 |
+
|
523 |
+
#Move matched spans to counted list
|
524 |
+
counted_system.append(s)
|
525 |
+
counted_target.append(t)
|
526 |
+
|
527 |
+
## 2. Compare input target list with matched system list
|
528 |
+
i = 0
|
529 |
+
while i < len(target_spans):
|
530 |
+
t = target_spans[i]
|
531 |
+
|
532 |
+
#Find possible boundary errors in already matched spans
|
533 |
+
#that still share unmatched tokens
|
534 |
+
be = [s for s in counted_system
|
535 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
536 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
537 |
+
and t[3].intersection(s[3])]
|
538 |
+
if not be:
|
539 |
+
i += 1
|
540 |
+
continue
|
541 |
+
|
542 |
+
#If there is more than one possible BE, take most similar one
|
543 |
+
if len(be) > 1:
|
544 |
+
s = _max_sim(t, be)
|
545 |
+
else:
|
546 |
+
s = be[0]
|
547 |
+
|
548 |
+
#Determine overlap type
|
549 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
550 |
+
|
551 |
+
#Overall: Count as BE and more fine-grained BE type
|
552 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
553 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
554 |
+
|
555 |
+
#Per-label: count as general BE and specific BE type
|
556 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
557 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
558 |
+
|
559 |
+
#Add to confusion matrix
|
560 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
561 |
+
|
562 |
+
#Remove matched span from input list
|
563 |
+
target_spans.remove(t)
|
564 |
+
|
565 |
+
#Remove matched tokens from spans
|
566 |
+
matching_tokens = t[3].intersection(s[3])
|
567 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
568 |
+
t[3] = t[3].difference(matching_tokens)
|
569 |
+
|
570 |
+
#Move target span to counted list
|
571 |
+
counted_target.append(t)
|
572 |
+
|
573 |
+
## 3. Compare input system list with matched target list
|
574 |
+
i = 0
|
575 |
+
while i < len(system_spans):
|
576 |
+
s = system_spans[i]
|
577 |
+
|
578 |
+
#Find possible boundary errors in already matched target spans
|
579 |
+
be = [t for t in counted_target
|
580 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
581 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
582 |
+
and t[3].intersection(s[3])]
|
583 |
+
if not be:
|
584 |
+
i += 1
|
585 |
+
continue
|
586 |
+
|
587 |
+
#If there is more than one possible BE, take most similar one
|
588 |
+
if len(be) > 1:
|
589 |
+
t = _max_sim(s, be)
|
590 |
+
else:
|
591 |
+
t = be[0]
|
592 |
+
|
593 |
+
#Determine overlap type
|
594 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
595 |
+
|
596 |
+
#Overall: Count as BE and more fine-grained BE type
|
597 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
598 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
599 |
+
|
600 |
+
#Per-label: count as general BE and specific BE type
|
601 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
602 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
603 |
+
|
604 |
+
#Add to confusion matrix
|
605 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
606 |
+
|
607 |
+
#Remove matched span from input list
|
608 |
+
system_spans.remove(s)
|
609 |
+
|
610 |
+
#Remove matched tokens from spans
|
611 |
+
matching_tokens = t[3].intersection(s[3])
|
612 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
613 |
+
s[3] = s[3].difference(matching_tokens)
|
614 |
+
|
615 |
+
#Move system span to counted list
|
616 |
+
counted_system.append(s)
|
617 |
+
|
618 |
+
### LBE
|
619 |
+
|
620 |
+
## 1. Compare input lists
|
621 |
+
#Identify labeling-boundary errors: different label but overlapping span
|
622 |
+
i = 0
|
623 |
+
while i < len(target_spans):
|
624 |
+
t = target_spans[i]
|
625 |
+
|
626 |
+
#Find possible boundary errors
|
627 |
+
lbe = [s for s in system_spans
|
628 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
629 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
630 |
+
if not lbe:
|
631 |
+
i += 1
|
632 |
+
continue
|
633 |
+
|
634 |
+
#If there is more than one possible LBE, take most similar one
|
635 |
+
if len(lbe) > 1:
|
636 |
+
s = _max_sim(t, lbe)
|
637 |
+
else:
|
638 |
+
s = lbe[0]
|
639 |
+
|
640 |
+
#Overall: count as LBE
|
641 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
642 |
+
|
643 |
+
#Per label: depending on focus count as LBE for target or system label
|
644 |
+
if focus == "target":
|
645 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
646 |
+
elif focus == "system":
|
647 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
648 |
+
|
649 |
+
#Add to confusion matrix
|
650 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
651 |
+
|
652 |
+
#Remove matched spans from input list
|
653 |
+
system_spans.remove(s)
|
654 |
+
target_spans.remove(t)
|
655 |
+
|
656 |
+
#Remove matched tokens from spans
|
657 |
+
matching_tokens = t[3].intersection(s[3])
|
658 |
+
s[3] = s[3].difference(matching_tokens)
|
659 |
+
t[3] = t[3].difference(matching_tokens)
|
660 |
+
|
661 |
+
#Move spans to counted lists
|
662 |
+
counted_system.append(s)
|
663 |
+
counted_target.append(t)
|
664 |
+
|
665 |
+
## 2. Compare input target list with matched system list
|
666 |
+
i = 0
|
667 |
+
while i < len(target_spans):
|
668 |
+
t = target_spans[i]
|
669 |
+
|
670 |
+
#Find possible labeling-boundary errors in already matched system spans
|
671 |
+
lbe = [s for s in counted_system
|
672 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
673 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
674 |
+
and t[3].intersection(s[3])]
|
675 |
+
if not lbe:
|
676 |
+
i += 1
|
677 |
+
continue
|
678 |
+
|
679 |
+
#If there is more than one possible LBE, take most similar one
|
680 |
+
if len(lbe) > 1:
|
681 |
+
s = _max_sim(t, lbe)
|
682 |
+
else:
|
683 |
+
s = lbe[0]
|
684 |
+
|
685 |
+
#Overall: count as LBE
|
686 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
687 |
+
|
688 |
+
#Per label: depending on focus count as LBE for target or system label
|
689 |
+
if focus == "target":
|
690 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
691 |
+
elif focus == "system":
|
692 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
693 |
+
|
694 |
+
#Add to confusion matrix
|
695 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
696 |
+
|
697 |
+
#Remove matched span from input list
|
698 |
+
target_spans.remove(t)
|
699 |
+
|
700 |
+
#Remove matched tokens from spans
|
701 |
+
matching_tokens = t[3].intersection(s[3])
|
702 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
703 |
+
t[3] = t[3].difference(matching_tokens)
|
704 |
+
|
705 |
+
#Move target span to counted list
|
706 |
+
counted_target.append(t)
|
707 |
+
|
708 |
+
## 3. Compare input system list with matched target list
|
709 |
+
i = 0
|
710 |
+
while i < len(system_spans):
|
711 |
+
s = system_spans[i]
|
712 |
+
|
713 |
+
#Find possible labeling-boundary errors in already matched target spans
|
714 |
+
lbe = [t for t in counted_target
|
715 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
716 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
717 |
+
and t[3].intersection(s[3])]
|
718 |
+
if not lbe:
|
719 |
+
i += 1
|
720 |
+
continue
|
721 |
+
|
722 |
+
#If there is more than one possible LBE, take most similar one
|
723 |
+
if len(lbe) > 1:
|
724 |
+
t = _max_sim(s, lbe)
|
725 |
+
else:
|
726 |
+
t = lbe[0]
|
727 |
+
|
728 |
+
#Overall: count as LBE
|
729 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
730 |
+
|
731 |
+
#Per label: depending on focus count as LBE for target or system label
|
732 |
+
if focus == "target":
|
733 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
734 |
+
elif focus == "system":
|
735 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
736 |
+
|
737 |
+
#Add to confusion matrix
|
738 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
739 |
+
|
740 |
+
#Remove matched span from input list
|
741 |
+
system_spans.remove(s)
|
742 |
+
|
743 |
+
#Remove matched tokens from spans
|
744 |
+
matching_tokens = t[3].intersection(s[3])
|
745 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
746 |
+
s[3] = s[3].difference(matching_tokens)
|
747 |
+
|
748 |
+
#Move matched system span to counted list
|
749 |
+
counted_system.append(s)
|
750 |
+
|
751 |
+
### 1:0 and 0:1 mappings
|
752 |
+
|
753 |
+
#FN: identify false negatives
|
754 |
+
for t in target_spans:
|
755 |
+
eval_dict["overall"]["fair"]["FN"] += 1
|
756 |
+
eval_dict["per_label"]["fair"][t[0]]["FN"] += 1
|
757 |
+
eval_dict["conf"][t[0]]["_"] += 1
|
758 |
+
|
759 |
+
#FP: identify false positives
|
760 |
+
for s in system_spans:
|
761 |
+
eval_dict["overall"]["fair"]["FP"] += 1
|
762 |
+
eval_dict["per_label"]["fair"][s[0]]["FP"] += 1
|
763 |
+
eval_dict["conf"]["_"][s[0]] += 1
|
764 |
+
|
765 |
+
return eval_dict
|
766 |
+
|
767 |
+
############################
|
768 |
+
|
769 |
+
def annotation_stats(target_spans, **config):
|
770 |
+
"""
|
771 |
+
Count the target annotations to display simple statistics.
|
772 |
+
|
773 |
+
The function takes a list of target spans
|
774 |
+
with each span being a 4-tuple [label, begin, end, token_set]
|
775 |
+
and adds the included labels to the general data stats dictionary.
|
776 |
+
|
777 |
+
Input:
|
778 |
+
- List of target spans
|
779 |
+
- Config dictionary
|
780 |
+
|
781 |
+
Output: The config dictionary is modified in-place.
|
782 |
+
"""
|
783 |
+
stats_dict = config.get("data_stats", {})
|
784 |
+
for span in target_spans:
|
785 |
+
if span[0] in stats_dict:
|
786 |
+
stats_dict[span[0]] += 1
|
787 |
+
else:
|
788 |
+
stats_dict[span[0]] = 1
|
789 |
+
config["data_stats"] = stats_dict
|
790 |
+
|
791 |
+
############################
|
792 |
+
|
793 |
+
def get_spans(sentence, **config):
|
794 |
+
"""
|
795 |
+
Return spans from CoNLL2000 or span files.
|
796 |
+
|
797 |
+
The function determines the data format of the input sentence
|
798 |
+
and extracts the spans from it accordingly.
|
799 |
+
|
800 |
+
If desired, punctuation can be ignored (config['ignore_punct'] == True)
|
801 |
+
for files in the CoNLL2000 format that include POS information.
|
802 |
+
The following list of tags is considered as punctuation:
|
803 |
+
['$.', '$,', '$(', #STTS
|
804 |
+
'PUNCT', #UPOS
|
805 |
+
'PUNKT', 'KOMMA', 'COMMA', 'KLAMMER', #custom
|
806 |
+
'.', ',', ':', '(', ')', '"', '‘', '“', '’', '”' #PTB
|
807 |
+
]
|
808 |
+
|
809 |
+
Labels that should be ignored (included in config['exclude']
|
810 |
+
or not included in config['labels'] if config['labels'] != 'all')
|
811 |
+
are also removed from the resulting list.
|
812 |
+
|
813 |
+
Input:
|
814 |
+
- List of lines for a given sentence
|
815 |
+
- Config dictionary
|
816 |
+
|
817 |
+
Output: List of spans that are included in the sentence.
|
818 |
+
"""
|
819 |
+
|
820 |
+
################
|
821 |
+
|
822 |
+
def spans_from_conll(sentence):
|
823 |
+
"""
|
824 |
+
Read annotation spans from a CoNLL2000 file.
|
825 |
+
|
826 |
+
The function takes a list of lines (belonging to one sentence)
|
827 |
+
and extracts the annotated spans. The lines are expected to
|
828 |
+
contain three space-separated columns:
|
829 |
+
|
830 |
+
Form XPOS Annotation
|
831 |
+
|
832 |
+
Form: Word form
|
833 |
+
XPOS: POS tag of the word (ideally STTS, UPOS, or PTB)
|
834 |
+
Annotation: Span annotation in BIO format (see below);
|
835 |
+
multiple spans are separated with the pipe symbol '|'
|
836 |
+
|
837 |
+
BIO tags consist of the token's position in the span
|
838 |
+
(begin 'B', inside 'I', outside 'O'), a dash '-' and the span label,
|
839 |
+
e.g., B-NP, I-AC, or in the case of stacked annotations I-RELC|B-NP.
|
840 |
+
|
841 |
+
The function accepts 'O', '_' and '' as annotations outside of spans.
|
842 |
+
|
843 |
+
Input: List of lines belonging to one sentence.
|
844 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
845 |
+
"""
|
846 |
+
spans = []
|
847 |
+
span_stack = []
|
848 |
+
|
849 |
+
#For each token
|
850 |
+
for t, tok in enumerate(sentence):
|
851 |
+
|
852 |
+
#Token is [Form, XPOS, Annotation]
|
853 |
+
tok = tok.split()
|
854 |
+
|
855 |
+
#Token is not annotated
|
856 |
+
if tok[-1] in ["O", "_", ""]:
|
857 |
+
#Add previous stack to span list
|
858 |
+
#(sorted from left to right)
|
859 |
+
while span_stack:
|
860 |
+
spans.append(span_stack.pop(0))
|
861 |
+
span_stack = []
|
862 |
+
continue
|
863 |
+
|
864 |
+
#Token is annotated
|
865 |
+
#Split stacked annotations at pipe
|
866 |
+
annotations = tok[-1].strip().split("|")
|
867 |
+
|
868 |
+
#While there are more annotation levels on
|
869 |
+
#the stack than at the current token,
|
870 |
+
#close annotations on the stack (i.e., move
|
871 |
+
#them to result list)
|
872 |
+
while len(span_stack) > len(annotations):
|
873 |
+
spans.append(span_stack.pop())
|
874 |
+
|
875 |
+
#For each annotation of the current token
|
876 |
+
for i, annotation in enumerate(annotations):
|
877 |
+
|
878 |
+
#New span
|
879 |
+
if annotation.startswith("B-"):
|
880 |
+
|
881 |
+
#If it's the first annotation level and there is
|
882 |
+
#something on the stack, move it to result list
|
883 |
+
if i == 0 and span_stack:
|
884 |
+
while span_stack:
|
885 |
+
spans.append(span_stack.pop(0))
|
886 |
+
#Otherwise, end same-level annotation on the
|
887 |
+
#stack (because a new span begins here) and
|
888 |
+
#move it to the result list
|
889 |
+
else:
|
890 |
+
while len(span_stack) > i:
|
891 |
+
spans.append(span_stack.pop())
|
892 |
+
|
893 |
+
#Last part of BIO tag is the label
|
894 |
+
label = annotation.split("-")[1]
|
895 |
+
|
896 |
+
#Create a new span with this token's
|
897 |
+
#index as start and end (incremendet by one).
|
898 |
+
s = [label, t+1, t+1, {t+1}]
|
899 |
+
|
900 |
+
#Add on top of stack
|
901 |
+
span_stack.append(s)
|
902 |
+
|
903 |
+
#Span continues
|
904 |
+
elif annotation.startswith("I-"):
|
905 |
+
#Increment the end index of the span
|
906 |
+
#at the level of this annotation on the stack
|
907 |
+
span_stack[i][2] = t+1
|
908 |
+
#Also, add the index to the token set
|
909 |
+
span_stack[i][-1].add(t+1)
|
910 |
+
|
911 |
+
#Add sentence final span(s)
|
912 |
+
while span_stack:
|
913 |
+
spans.append(span_stack.pop(0))
|
914 |
+
|
915 |
+
return spans
|
916 |
+
|
917 |
+
################
|
918 |
+
|
919 |
+
def spans_from_lines(sentence):
|
920 |
+
"""
|
921 |
+
Read annotation spans from a span file.
|
922 |
+
|
923 |
+
The function takes a list of lines (belonging to one sentence)
|
924 |
+
and extracts the annotated spans. The lines are expected to
|
925 |
+
contain four tab-separated columns:
|
926 |
+
|
927 |
+
Label Begin End Tokens
|
928 |
+
|
929 |
+
Label: Span label
|
930 |
+
Begin: Index of the first included token (must be convertible to int)
|
931 |
+
End: Index of the last included token (must be convertible to int
|
932 |
+
and equal or greater than begin)
|
933 |
+
Tokens: Comma-separated list of indices of the tokens in the span
|
934 |
+
(must be convertible to int with begin <= i <= end);
|
935 |
+
if no (valid) indices are given, the range begin:end is used
|
936 |
+
|
937 |
+
Input: List of lines belonging to one sentence.
|
938 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
939 |
+
"""
|
940 |
+
spans = []
|
941 |
+
for line in sentence:
|
942 |
+
vals = line.split("\t")
|
943 |
+
label = vals[0]
|
944 |
+
if not label:
|
945 |
+
print("ERROR: Missing label in input.")
|
946 |
+
return []
|
947 |
+
try:
|
948 |
+
begin = int(vals[1])
|
949 |
+
if begin < 1: raise ValueError
|
950 |
+
except ValueError:
|
951 |
+
print("ERROR: Begin {0} is not a legal index.".format(vals[1]))
|
952 |
+
return []
|
953 |
+
try:
|
954 |
+
end = int(vals[2])
|
955 |
+
if end < 1: raise ValueError
|
956 |
+
if end < begin: begin, end = end, begin
|
957 |
+
except ValueError:
|
958 |
+
print("ERROR: End {0} is not a legal index.".format(vals[2]))
|
959 |
+
return []
|
960 |
+
try:
|
961 |
+
toks = [int(v.strip()) for v in vals[-1].split(",")
|
962 |
+
if int(v.strip()) >= begin and int(v.strip()) <= end]
|
963 |
+
toks = set(toks)
|
964 |
+
except ValueError:
|
965 |
+
toks = []
|
966 |
+
if not toks:
|
967 |
+
toks = [i for i in range(begin, end+1)]
|
968 |
+
spans.append([label, begin, end, toks])
|
969 |
+
return spans
|
970 |
+
|
971 |
+
################
|
972 |
+
|
973 |
+
#Determine data format
|
974 |
+
|
975 |
+
#Span files contain 4 tab-separated columns
|
976 |
+
if len(sentence[0].split("\t")) == 4:
|
977 |
+
format = "spans"
|
978 |
+
spans = spans_from_lines(sentence)
|
979 |
+
|
980 |
+
#CoNLL2000 files contain 3 space-separated columns
|
981 |
+
elif len(sentence[0].split(" ")) == 3:
|
982 |
+
format = "conll2000"
|
983 |
+
spans = spans_from_conll(sentence)
|
984 |
+
else:
|
985 |
+
print("ERROR: Unknown input format")
|
986 |
+
return []
|
987 |
+
|
988 |
+
#Exclude punctuation from CoNLL2000, if desired
|
989 |
+
if format == "conll2000" \
|
990 |
+
and config.get("ignore_punct") == True:
|
991 |
+
|
992 |
+
#For each punctuation tok
|
993 |
+
for i, line in enumerate(sentence):
|
994 |
+
if line.split(" ")[1] in ["$.", "$,", "$(", #STTS
|
995 |
+
"PUNCT", #UPOS
|
996 |
+
"PUNKT", "KOMMA", "COMMA", "KLAMMER", #custom
|
997 |
+
".", ",", ":", "(", ")", "\"", "‘", "“", "’", "”" #PTB
|
998 |
+
]:
|
999 |
+
|
1000 |
+
for s in range(len(spans)):
|
1001 |
+
#Remove punc tok from set
|
1002 |
+
spans[s][-1].discard(i+1)
|
1003 |
+
|
1004 |
+
#If span begins with punc, move begin
|
1005 |
+
if spans[s][1] == i+1:
|
1006 |
+
if spans[s][2] != None and spans[s][2] > i+1:
|
1007 |
+
spans[s][1] = i+2
|
1008 |
+
else:
|
1009 |
+
spans[s][1] = None
|
1010 |
+
|
1011 |
+
#If span ends with punc, move end
|
1012 |
+
if spans[s][2] == i+1:
|
1013 |
+
if spans[s][1] != None and spans[s][1] <= i:
|
1014 |
+
spans[s][2] = i
|
1015 |
+
else:
|
1016 |
+
spans[s][2] = None
|
1017 |
+
|
1018 |
+
#Remove empty spans
|
1019 |
+
spans = [s for s in spans if s[1] != None and s[2] != None and len(s[3]) > 0]
|
1020 |
+
|
1021 |
+
#Exclude unwanted labels
|
1022 |
+
spans = [s for s in spans
|
1023 |
+
if not s[0] in config.get("exclude", [])
|
1024 |
+
and ("all" in config.get("labels", [])
|
1025 |
+
or s[0] in config.get("labels", []))]
|
1026 |
+
|
1027 |
+
return spans
|
1028 |
+
|
1029 |
+
############################
|
1030 |
+
|
1031 |
+
def get_sentences(filename):
|
1032 |
+
"""
|
1033 |
+
Reads sentences from input files.
|
1034 |
+
|
1035 |
+
The function iterates through the input file and
|
1036 |
+
yields a list of lines that belong to one sentence.
|
1037 |
+
Sentences are expected to be separated by an empty line.
|
1038 |
+
|
1039 |
+
Input: Filename of the input file.
|
1040 |
+
Output: Yields a list of lines for each sentence.
|
1041 |
+
"""
|
1042 |
+
file = open(filename, mode="r", encoding="utf-8")
|
1043 |
+
sent = []
|
1044 |
+
|
1045 |
+
for line in file:
|
1046 |
+
#New line: yield collected lines
|
1047 |
+
if sent and not line.strip():
|
1048 |
+
yield sent
|
1049 |
+
sent = []
|
1050 |
+
#New line but nothing to yield
|
1051 |
+
elif not line.strip():
|
1052 |
+
continue
|
1053 |
+
#Collect line of current sentence
|
1054 |
+
else:
|
1055 |
+
sent.append(line.strip())
|
1056 |
+
|
1057 |
+
#Last sentence if file doesn't end with empty line
|
1058 |
+
if sent:
|
1059 |
+
yield sent
|
1060 |
+
|
1061 |
+
file.close()
|
1062 |
+
|
1063 |
+
#############################
|
1064 |
+
|
1065 |
+
def add_dict(base_dict, dict_to_add):
|
1066 |
+
"""
|
1067 |
+
Take a base dictionary and add the values
|
1068 |
+
from another dictionary to it.
|
1069 |
+
|
1070 |
+
Contrary to standard dict update methods,
|
1071 |
+
this function does not overwrite values in the
|
1072 |
+
base dictionary. Instead, it is meant to add
|
1073 |
+
the values of the second dictionary to the values
|
1074 |
+
in the base dictionary. The dictionary is modified in-place.
|
1075 |
+
|
1076 |
+
For example:
|
1077 |
+
|
1078 |
+
>> base = {"A" : 1, "B" : {"c" : 2, "d" : 3}, "C" : [1, 2, 3]}
|
1079 |
+
>> add = {"A" : 1, "B" : {"c" : 1, "e" : 1}, "C" : [4], "D" : 2}
|
1080 |
+
>> add_dict(base, add)
|
1081 |
+
|
1082 |
+
will create a base dictionary:
|
1083 |
+
|
1084 |
+
>> base
|
1085 |
+
{'A': 2, 'B': {'c': 3, 'd': 3, 'e': 1}, 'C': [1, 2, 3, 4], 'D': 2}
|
1086 |
+
|
1087 |
+
The function can handle different types of nested structures.
|
1088 |
+
- Integers and float values are summed up.
|
1089 |
+
- Lists are appended
|
1090 |
+
- Sets are added (set union)
|
1091 |
+
- Dictionaries are added recursively
|
1092 |
+
For other value types, the base dictionary is left unchanged.
|
1093 |
+
|
1094 |
+
Input: Base dictionary and dictionary to be added.
|
1095 |
+
Output: Base dictionary.
|
1096 |
+
"""
|
1097 |
+
|
1098 |
+
#For each key in second dict
|
1099 |
+
for key, val in dict_to_add.items():
|
1100 |
+
|
1101 |
+
#It is already in the base dict
|
1102 |
+
if key in base_dict:
|
1103 |
+
|
1104 |
+
#It has an integer or float value
|
1105 |
+
if isinstance(val, (int, float)) \
|
1106 |
+
and isinstance(base_dict[key], (int, float)):
|
1107 |
+
|
1108 |
+
#Increment value in base dict
|
1109 |
+
base_dict[key] += val
|
1110 |
+
|
1111 |
+
#It has an iterable as value
|
1112 |
+
elif isinstance(val, Iterable) \
|
1113 |
+
and isinstance(base_dict[key], Iterable):
|
1114 |
+
|
1115 |
+
#List
|
1116 |
+
if isinstance(val, list) \
|
1117 |
+
and isinstance(base_dict[key], list):
|
1118 |
+
#Append
|
1119 |
+
base_dict[key].extend(val)
|
1120 |
+
|
1121 |
+
#Set
|
1122 |
+
elif isinstance(val, set) \
|
1123 |
+
and isinstance(base_dict[key], set):
|
1124 |
+
#Set union
|
1125 |
+
base_dict[key].update(val)
|
1126 |
+
|
1127 |
+
#Dict
|
1128 |
+
elif isinstance(val, dict) \
|
1129 |
+
and isinstance(base_dict[key], dict):
|
1130 |
+
#Recursively repeat
|
1131 |
+
add_dict(base_dict[key], val)
|
1132 |
+
|
1133 |
+
#Something else
|
1134 |
+
else:
|
1135 |
+
#Do nothing
|
1136 |
+
pass
|
1137 |
+
|
1138 |
+
#It has something else as value
|
1139 |
+
else:
|
1140 |
+
#Do nothing
|
1141 |
+
pass
|
1142 |
+
|
1143 |
+
#It is not in the base dict
|
1144 |
+
else:
|
1145 |
+
#Insert values from second dict into base
|
1146 |
+
base_dict[key] = deepcopy(val)
|
1147 |
+
|
1148 |
+
return base_dict
|
1149 |
+
|
1150 |
+
#############################
|
1151 |
+
|
1152 |
+
def calculate_results(eval_dict, **config):
|
1153 |
+
"""
|
1154 |
+
Calculate overall precision, recall, and F-scores.
|
1155 |
+
|
1156 |
+
The function takes an evaluation dictionary with error counts
|
1157 |
+
and applies the precision, recall and fscore functions.
|
1158 |
+
|
1159 |
+
It will calculate the traditional metrics
|
1160 |
+
and fair and/or weighted metrics, depending on the
|
1161 |
+
value of config['eval_method'].
|
1162 |
+
|
1163 |
+
The results are stored in the eval dict as 'Prec', 'Rec' and 'F1'
|
1164 |
+
for overall and per-label counts.
|
1165 |
+
|
1166 |
+
Input: Evaluation dict and config dict.
|
1167 |
+
Output: Evaluation dict with added precision, recall and F1 values.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
#If weighted evaluation should be performed
|
1171 |
+
#copy error counts from fair evaluation
|
1172 |
+
if "weighted" in config.get("eval_method", []):
|
1173 |
+
eval_dict["overall"]["weighted"] = {}
|
1174 |
+
for err_type in eval_dict["overall"]["fair"]:
|
1175 |
+
eval_dict["overall"]["weighted"][err_type] = eval_dict["overall"]["fair"][err_type]
|
1176 |
+
for label in eval_dict["per_label"]["fair"]:
|
1177 |
+
eval_dict["per_label"]["weighted"][label] = {}
|
1178 |
+
for err_type in eval_dict["per_label"]["fair"][label]:
|
1179 |
+
eval_dict["per_label"]["weighted"][label][err_type] = eval_dict["per_label"]["fair"][label][err_type]
|
1180 |
+
|
1181 |
+
#For each evaluation method
|
1182 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1183 |
+
|
1184 |
+
#Overall results
|
1185 |
+
eval_dict["overall"][version]["Prec"] = precision(eval_dict["overall"][version],
|
1186 |
+
version,
|
1187 |
+
config.get("weights", {}))
|
1188 |
+
eval_dict["overall"][version]["Rec"] = recall(eval_dict["overall"][version],
|
1189 |
+
version,
|
1190 |
+
config.get("weights", {}))
|
1191 |
+
eval_dict["overall"][version]["F1"] = fscore(eval_dict["overall"][version])
|
1192 |
+
|
1193 |
+
#Per label results
|
1194 |
+
for label in eval_dict["per_label"][version]:
|
1195 |
+
eval_dict["per_label"][version][label]["Prec"] = precision(eval_dict["per_label"][version][label],
|
1196 |
+
version,
|
1197 |
+
config.get("weights", {}))
|
1198 |
+
eval_dict["per_label"][version][label]["Rec"] = recall(eval_dict["per_label"][version][label],
|
1199 |
+
version,
|
1200 |
+
config.get("weights", {}))
|
1201 |
+
eval_dict["per_label"][version][label]["F1"] = fscore(eval_dict["per_label"][version][label])
|
1202 |
+
|
1203 |
+
return eval_dict
|
1204 |
+
|
1205 |
+
#############################
|
1206 |
+
|
1207 |
+
def output_results(eval_dict, **config):
|
1208 |
+
"""
|
1209 |
+
Write evaluation results to the output (file).
|
1210 |
+
|
1211 |
+
The function takes an evaluation dict and writes
|
1212 |
+
all results to the specified output (file):
|
1213 |
+
|
1214 |
+
1. Traditional evaluation results
|
1215 |
+
2. Additional evaluation results (fair and/or weighted)
|
1216 |
+
3. Result comparison for different evaluation methods
|
1217 |
+
4. Confusion matrix
|
1218 |
+
5. Data statistics
|
1219 |
+
|
1220 |
+
Input: Evaluation dict and config dict.
|
1221 |
+
"""
|
1222 |
+
outfile = config.get("eval_out", sys.stdout)
|
1223 |
+
|
1224 |
+
### Output results for each evaluation method
|
1225 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1226 |
+
print(file=outfile)
|
1227 |
+
print("### {0} evaluation:".format(version.title()), file=outfile)
|
1228 |
+
|
1229 |
+
#Determine error categories to output
|
1230 |
+
if version == "traditional":
|
1231 |
+
cats = ["TP", "FP", "FN"]
|
1232 |
+
elif version == "fair" or not config.get("weights", {}):
|
1233 |
+
cats = ["TP", "FP", "LE", "BE", "LBE", "FN"]
|
1234 |
+
else:
|
1235 |
+
cats = list(config.get("weights").keys())
|
1236 |
+
|
1237 |
+
#Print header
|
1238 |
+
print("Label", "\t".join(cats), "Prec", "Rec", "F1", sep="\t", file=outfile)
|
1239 |
+
|
1240 |
+
#Output results for each label
|
1241 |
+
for label,val in sorted(eval_dict["per_label"][version].items()):
|
1242 |
+
print(label,
|
1243 |
+
"\t".join([str(val.get(cat, eval_dict["per_label"]["fair"].get(cat, 0)))
|
1244 |
+
for cat in cats]),
|
1245 |
+
"\t".join(["{:04.2f}".format(val.get(metric, 0)*100)
|
1246 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1247 |
+
sep="\t", file=outfile)
|
1248 |
+
|
1249 |
+
#Output overall results
|
1250 |
+
print("overall",
|
1251 |
+
"\t".join([str(eval_dict["overall"][version].get(cat, eval_dict["overall"]["fair"].get(cat, 0)))
|
1252 |
+
for cat in cats]),
|
1253 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
1254 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1255 |
+
sep="\t", file=outfile)
|
1256 |
+
|
1257 |
+
### Output result comparison
|
1258 |
+
print(file=outfile)
|
1259 |
+
print("### Comparison:", file=outfile)
|
1260 |
+
print("Version", "Prec", "Rec", "F1", sep="\t", file=outfile)
|
1261 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
1262 |
+
print(version.title(),
|
1263 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
1264 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
1265 |
+
sep="\t", file=outfile)
|
1266 |
+
|
1267 |
+
### Output confusion matrix
|
1268 |
+
print(file=outfile)
|
1269 |
+
print("### Confusion matrix:", file=outfile)
|
1270 |
+
|
1271 |
+
#Get set of target labels
|
1272 |
+
labels = {lab for lab in eval_dict["conf"]}
|
1273 |
+
|
1274 |
+
#Add system labels
|
1275 |
+
labels = list(labels.union({syslab
|
1276 |
+
for lab in eval_dict["conf"]
|
1277 |
+
for syslab in eval_dict["conf"][lab]}))
|
1278 |
+
|
1279 |
+
#Sort alphabetically for output
|
1280 |
+
labels.sort()
|
1281 |
+
|
1282 |
+
#Print top row with system labels
|
1283 |
+
print(r"Target\System", "\t".join(labels), sep="\t", file=outfile)
|
1284 |
+
|
1285 |
+
#Print rows with target labels and counts
|
1286 |
+
for targetlab in labels:
|
1287 |
+
print(targetlab,
|
1288 |
+
"\t".join([str(eval_dict["conf"][targetlab].get(syslab, 0))
|
1289 |
+
for syslab in labels]),
|
1290 |
+
sep="\t", file=outfile)
|
1291 |
+
|
1292 |
+
#Output data statistic
|
1293 |
+
print(file=outfile)
|
1294 |
+
print("### Target data stats:", file=outfile)
|
1295 |
+
print("Label", "Freq", "%", sep="\t", file=outfile)
|
1296 |
+
total = sum(config.get("data_stats", {}).values())
|
1297 |
+
for lab, freq in config.get("data_stats", {}).items():
|
1298 |
+
print(lab, freq, "{:04.2f}".format(freq/total*100), sep="\t", file=outfile)
|
1299 |
+
|
1300 |
+
#Close output if it is a file
|
1301 |
+
if isinstance(config.get("eval_out"), TextIOWrapper):
|
1302 |
+
outfile.close()
|
1303 |
+
|
1304 |
+
#############################
|
1305 |
+
|
1306 |
+
def read_config(config_file):
|
1307 |
+
"""
|
1308 |
+
Function to set program parameters as specified in the config file.
|
1309 |
+
|
1310 |
+
The following parameters are handled:
|
1311 |
+
|
1312 |
+
- target_in: path to the target file(s) with gold standard annotation
|
1313 |
+
-> output: 'target_files' : [list of target file paths]
|
1314 |
+
|
1315 |
+
- system_in: path to the system's output file(s), which are evaluated
|
1316 |
+
-> output: 'system_files' : [list of system file paths]
|
1317 |
+
|
1318 |
+
- eval_out: path or filename, where evaluation results should be stored
|
1319 |
+
if value is a path, output file 'path/eval.csv' is created
|
1320 |
+
if value is 'cmd' or missing, output is set to sys.stdout
|
1321 |
+
-> output: 'eval_out' : output file or sys.stdout
|
1322 |
+
|
1323 |
+
- labels: comma-separated list of labels to evaluate
|
1324 |
+
defaults to 'all'
|
1325 |
+
-> output: 'labels' : [list of labels as strings]
|
1326 |
+
|
1327 |
+
- exclude: comma-separated list of labels to exclude from evaluation
|
1328 |
+
always contains 'NONE' and 'EMPTY'
|
1329 |
+
-> output: 'exclude' : [list of labels as strings]
|
1330 |
+
|
1331 |
+
- ignore_punct: wether to ignore punctuation during evaluation (true/false)
|
1332 |
+
-> output: 'ignore_punct' : True/False
|
1333 |
+
|
1334 |
+
- focus: wether to focus the evaluation on 'target' or 'system' annotations
|
1335 |
+
defaults to 'target'
|
1336 |
+
-> output: 'focus' : 'target' or 'system'
|
1337 |
+
|
1338 |
+
- weights: weights that should be applied during calculation of precision
|
1339 |
+
and recall; at the same time can serve as a list of additional
|
1340 |
+
error types to include in the evaluation
|
1341 |
+
the weights are parsed from comma-separated input formulas of the form
|
1342 |
+
|
1343 |
+
error_type = weight * TP + weight2 * FP + weight3 * FN
|
1344 |
+
|
1345 |
+
-> output: 'weights' : { 'error type' : {
|
1346 |
+
'TP' : weight,
|
1347 |
+
'FP' : weight,
|
1348 |
+
'FN' : weight
|
1349 |
+
},
|
1350 |
+
'another error type' : {...}
|
1351 |
+
}
|
1352 |
+
|
1353 |
+
- eval_method: defines which evaluation method(s) to use
|
1354 |
+
one or more of: 'traditional', 'fair', 'weighted'
|
1355 |
+
if value is 'all' or missing, all available methods are returned
|
1356 |
+
-> output: 'eval_method' : [list of eval methods]
|
1357 |
+
|
1358 |
+
Input: Filename of the config file.
|
1359 |
+
Output: Settings dictionary.
|
1360 |
+
"""
|
1361 |
+
|
1362 |
+
############################
|
1363 |
+
|
1364 |
+
def _parse_config(key, val):
|
1365 |
+
"""
|
1366 |
+
Internal function to set specific values for the given keys.
|
1367 |
+
In case of illegal values, prints error message and sets key and/or value to None.
|
1368 |
+
Input: Key and value from config file
|
1369 |
+
Output: Modified key and value
|
1370 |
+
"""
|
1371 |
+
if key in ["target_in", "system_in"]:
|
1372 |
+
if os.path.isdir(val):
|
1373 |
+
val = os.path.normpath(val)
|
1374 |
+
files = [os.path.join(val, f) for f in os.listdir(val)]
|
1375 |
+
elif os.path.isfile(val):
|
1376 |
+
files = [os.path.normpath(val)]
|
1377 |
+
else:
|
1378 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
1379 |
+
return None, None
|
1380 |
+
if key == "target_in":
|
1381 |
+
return "target_files", files
|
1382 |
+
elif key == "system_in":
|
1383 |
+
return "system_files", files
|
1384 |
+
|
1385 |
+
elif key == "eval_out":
|
1386 |
+
if os.path.isdir(val):
|
1387 |
+
val = os.path.normpath(val)
|
1388 |
+
outfile = os.path.join(val, "eval.csv")
|
1389 |
+
elif os.path.isfile(val):
|
1390 |
+
outfile = os.path.normpath(val)
|
1391 |
+
elif val == "cmd":
|
1392 |
+
outfile = sys.stdout
|
1393 |
+
else:
|
1394 |
+
try:
|
1395 |
+
p, f = os.path.split(val)
|
1396 |
+
if not os.path.isdir(p):
|
1397 |
+
os.makedirs(p)
|
1398 |
+
outfile = os.path.join(p, f)
|
1399 |
+
except:
|
1400 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
1401 |
+
return None, None
|
1402 |
+
return key, outfile
|
1403 |
+
|
1404 |
+
elif key in ["labels", "exclude"]:
|
1405 |
+
labels = list(set([v.strip() for v in val.split(",") if v.strip()]))
|
1406 |
+
if key == "exclude":
|
1407 |
+
labels.append("NONE")
|
1408 |
+
labels.append("EMPTY")
|
1409 |
+
return key, labels
|
1410 |
+
|
1411 |
+
elif key == "ignore_punct":
|
1412 |
+
if val.strip().lower() == "false":
|
1413 |
+
return key, False
|
1414 |
+
else:
|
1415 |
+
return key, True
|
1416 |
+
|
1417 |
+
elif key == "focus":
|
1418 |
+
if val.strip().lower() == "system":
|
1419 |
+
return key, "system"
|
1420 |
+
else:
|
1421 |
+
return key, "target"
|
1422 |
+
|
1423 |
+
elif key == "weights":
|
1424 |
+
if val == "default":
|
1425 |
+
return key, {"TP" : {"TP" : 1},
|
1426 |
+
"FP" : {"FP" : 1},
|
1427 |
+
"FN" : {"FN" : 1},
|
1428 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1429 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1430 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
1431 |
+
else:
|
1432 |
+
formulas = val.split(",")
|
1433 |
+
weights = {}
|
1434 |
+
|
1435 |
+
#For each given formula, i.e., for each error type
|
1436 |
+
for f in formulas:
|
1437 |
+
|
1438 |
+
#Match error type as string-initial letters before equal sign =
|
1439 |
+
error_type = re.match(r"\s*(?P<Error>\w+)\s*=", f)
|
1440 |
+
if error_type == None:
|
1441 |
+
print("WARNING: No error type found in weight formula '{0}'.".format(f))
|
1442 |
+
continue
|
1443 |
+
else:
|
1444 |
+
error_type = error_type.group("Error")
|
1445 |
+
|
1446 |
+
weights[error_type] = {}
|
1447 |
+
|
1448 |
+
#Match weight for TP
|
1449 |
+
w_tp = re.search(r"(?P<TP>\d*\.?\d+)\s*\*?\s*TP", f)
|
1450 |
+
if w_tp == None:
|
1451 |
+
print("WARNING: Missing weight for TP for error type {0}. Set to 0.".format(error_type))
|
1452 |
+
weights[error_type]["TP"] = 0
|
1453 |
+
else:
|
1454 |
+
try:
|
1455 |
+
w_tp = w_tp.group("TP")
|
1456 |
+
w_tp = float(w_tp)
|
1457 |
+
weights[error_type]["TP"] = w_tp
|
1458 |
+
except ValueError:
|
1459 |
+
print("WARNING: Weight for TP for error type {0} is not a number. Set to 0.".format(error_type))
|
1460 |
+
weights[error_type]["TP"] = 0
|
1461 |
+
|
1462 |
+
#Match weight for FP
|
1463 |
+
w_fp = re.search(r"(?P<FP>\d*\.?\d+)\s*\*?\s*FP", f)
|
1464 |
+
if w_fp == None:
|
1465 |
+
print("WARNING: Missing weight for FP for error type {0}. Set to 0.".format(error_type))
|
1466 |
+
weights[error_type]["FP"] = 0
|
1467 |
+
else:
|
1468 |
+
try:
|
1469 |
+
w_fp = w_fp.group("FP")
|
1470 |
+
w_fp = float(w_fp)
|
1471 |
+
weights[error_type]["FP"] = w_fp
|
1472 |
+
except ValueError:
|
1473 |
+
print("WARNING: Weight for FP for error type {0} is not a number. Set to 0.".format(error_type))
|
1474 |
+
weights[error_type]["FP"] = 0
|
1475 |
+
|
1476 |
+
#Match weight for FP
|
1477 |
+
w_fn = re.search(r"(?P<FN>\d*\.?\d+)\s*\*?\s*FN", f)
|
1478 |
+
if w_fn == None:
|
1479 |
+
print("WARNING: Missing weight for FN for error type {0}. Set to 0.".format(error_type))
|
1480 |
+
weights[error_type]["FN"] = 0
|
1481 |
+
else:
|
1482 |
+
try:
|
1483 |
+
w_fn = w_fn.group("FN")
|
1484 |
+
w_fn = float(w_fn)
|
1485 |
+
weights[error_type]["FN"] = w_fn
|
1486 |
+
except ValueError:
|
1487 |
+
print("WARNING: Weight for FN for error type {0} is not a number. Set to 0.".format(error_type))
|
1488 |
+
weights[error_type]["FN"] = 0
|
1489 |
+
if weights:
|
1490 |
+
#Add default weights for traditional categories if needed
|
1491 |
+
if not "TP" in weights:
|
1492 |
+
weights["TP"] = {"TP" : 1}
|
1493 |
+
if not "FP" in weights:
|
1494 |
+
weights["FP"] = {"FP" : 1}
|
1495 |
+
if not "FN" in weights:
|
1496 |
+
weights["FN"] = {"FN" : 1}
|
1497 |
+
return key, weights
|
1498 |
+
else:
|
1499 |
+
print("WARNING: No valid weights found. Using default weights.")
|
1500 |
+
return key, {"TP" : {"TP" : 1},
|
1501 |
+
"FP" : {"FP" : 1},
|
1502 |
+
"FN" : {"FN" : 1},
|
1503 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1504 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
1505 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
1506 |
+
|
1507 |
+
elif key == "eval_method":
|
1508 |
+
available_methods = ["traditional", "fair", "weighted"]
|
1509 |
+
if val == "all":
|
1510 |
+
return key, available_methods
|
1511 |
+
else:
|
1512 |
+
methods = []
|
1513 |
+
for m in available_methods:
|
1514 |
+
if m in [v.strip() for v in val.split(",")
|
1515 |
+
if v.strip() and v.strip().lower() in available_methods]:
|
1516 |
+
methods.append(m)
|
1517 |
+
if methods:
|
1518 |
+
return key, methods
|
1519 |
+
else:
|
1520 |
+
print("WARNING: No evaluation method specified. Applying all methods.")
|
1521 |
+
return key, available_methods
|
1522 |
+
|
1523 |
+
#############################
|
1524 |
+
|
1525 |
+
config = dict()
|
1526 |
+
|
1527 |
+
f = open(config_file, mode="r", encoding="utf-8")
|
1528 |
+
|
1529 |
+
for line in f:
|
1530 |
+
|
1531 |
+
line = line.strip()
|
1532 |
+
|
1533 |
+
#Skip empty lines and comments
|
1534 |
+
if not line or line.startswith("#"):
|
1535 |
+
continue
|
1536 |
+
|
1537 |
+
line = line.split("=")
|
1538 |
+
key = line[0].strip()
|
1539 |
+
val = "=".join(line[1:]).strip()
|
1540 |
+
|
1541 |
+
#Store original paths of input files
|
1542 |
+
if key in ["target_in", "system_in"]:
|
1543 |
+
print("{0}: {1}".format(key, val))
|
1544 |
+
config[key] = val
|
1545 |
+
|
1546 |
+
#Parse config
|
1547 |
+
key, val = _parse_config(key, val)
|
1548 |
+
|
1549 |
+
#Skip illegal configs
|
1550 |
+
if key is None or val is None:
|
1551 |
+
continue
|
1552 |
+
|
1553 |
+
#Warn before overwriting duplicate config items.
|
1554 |
+
if key in config:
|
1555 |
+
print("WARNING: duplicate config item '{0}' found.".format(key))
|
1556 |
+
|
1557 |
+
config[key] = val
|
1558 |
+
|
1559 |
+
f.close()
|
1560 |
+
|
1561 |
+
#Stop evaluation if either target or system files are missing
|
1562 |
+
if not "target_files" in config or not "system_files" in config:
|
1563 |
+
print("ERROR: Cannot evaluate without target AND system file(s). Quitting.")
|
1564 |
+
return None
|
1565 |
+
|
1566 |
+
#Output to sys.stdout if no evaluation file is specified
|
1567 |
+
elif config.get("eval_out", None) == None:
|
1568 |
+
config["eval_out"] = sys.stdout
|
1569 |
+
#Otherwise open eval file
|
1570 |
+
else:
|
1571 |
+
config["eval_out"] = open(config.get("eval_out"), mode="w", encoding="utf-8")
|
1572 |
+
|
1573 |
+
#Set labels to 'all' if no specific labels are given
|
1574 |
+
if config.get("labels", None) == None:
|
1575 |
+
config["labels"] = ["all"]
|
1576 |
+
|
1577 |
+
if config.get("eval_method", None) == None:
|
1578 |
+
config["eval_method"] = ["traditional", "fair", "weighted"]
|
1579 |
+
if not config.get("weights", {}) and "weighted" in config.get("eval_method"):
|
1580 |
+
if not "fair" in config["eval_method"]:
|
1581 |
+
config["eval_method"].append("fair")
|
1582 |
+
del config["eval_method"][config["eval_method"].index("weighted")]
|
1583 |
+
|
1584 |
+
#Output settings at the top of evaluation file
|
1585 |
+
print("### Evaluation settings:", file=config.get("eval_out"))
|
1586 |
+
for key in sorted(config.keys()):
|
1587 |
+
if key in ["target_files", "system_files", "eval_out"]:
|
1588 |
+
continue
|
1589 |
+
print("{0}: {1}".format(key, config.get(key)), file=config.get("eval_out"))
|
1590 |
+
print(file=config.get("eval_out"))
|
1591 |
+
|
1592 |
+
return config
|
1593 |
+
|
1594 |
+
###########################
|
1595 |
+
|
1596 |
+
if __name__ == '__main__':
|
1597 |
+
parser = argparse.ArgumentParser()
|
1598 |
+
parser.add_argument('--config', help='Configuration File', required=True)
|
1599 |
+
|
1600 |
+
args = parser.parse_args()
|
1601 |
+
|
1602 |
+
#Read config file into dict
|
1603 |
+
config = read_config(args.config)
|
1604 |
+
|
1605 |
+
#Create empty eval dict
|
1606 |
+
eval_dict = {"overall" : {"traditional" : {}, "fair" : {}},
|
1607 |
+
"per_label" : {"traditional" : {}, "fair" : {}},
|
1608 |
+
"conf" : {}}
|
1609 |
+
for method in config.get("eval_method", ["traditional", "fair"]):
|
1610 |
+
eval_dict["overall"][method] = {}
|
1611 |
+
eval_dict["per_label"][method] = {}
|
1612 |
+
|
1613 |
+
#Create dict to count target annotations
|
1614 |
+
config["data_stats"] = {}
|
1615 |
+
|
1616 |
+
#Get system and target files to compare
|
1617 |
+
#The files must have the same name to be compared
|
1618 |
+
file_pairs = []
|
1619 |
+
for t in config.get("target_files", []):
|
1620 |
+
s = [f for f in config.get("system_files", [])
|
1621 |
+
if os.path.split(t)[-1] == os.path.split(f)[-1]]
|
1622 |
+
if s:
|
1623 |
+
file_pairs.append((t, s[0]))
|
1624 |
+
|
1625 |
+
#Go through target and system files in parallel
|
1626 |
+
for target_file, system_file in file_pairs:
|
1627 |
+
|
1628 |
+
#For each sentence pair
|
1629 |
+
for target_sentence, system_sentence in zip(get_sentences(target_file),
|
1630 |
+
get_sentences(system_file)):
|
1631 |
+
|
1632 |
+
#Get spans
|
1633 |
+
target_spans = get_spans(target_sentence, **config)
|
1634 |
+
system_spans = get_spans(system_sentence, **config)
|
1635 |
+
|
1636 |
+
#Count target annotations for simple statistics.
|
1637 |
+
#Result is stored in data_stats key of config dict.
|
1638 |
+
annotation_stats(target_spans, **config)
|
1639 |
+
|
1640 |
+
#Evaluate spans
|
1641 |
+
sent_counts = compare_spans(target_spans, system_spans,
|
1642 |
+
config.get("focus", "target"))
|
1643 |
+
|
1644 |
+
#Add results to eval dict
|
1645 |
+
eval_dict = add_dict(eval_dict, sent_counts)
|
1646 |
+
|
1647 |
+
#Calculate overall results
|
1648 |
+
eval_dict = calculate_results(eval_dict, **config)
|
1649 |
+
|
1650 |
+
#Output results
|
1651 |
+
output_results(eval_dict, **config)
|
FairEval.py
CHANGED
@@ -57,8 +57,22 @@ For the computation of the fair metrics from the error count please refer to: ht
|
|
57 |
Args:
|
58 |
predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
|
59 |
references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
|
60 |
-
mode: 'fair'
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
|
63 |
suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
|
64 |
scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
|
@@ -67,14 +81,14 @@ Returns:
|
|
67 |
- Overall error parameter count (or ratio) and resulting scores.
|
68 |
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
|
69 |
|
70 |
-
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair'
|
71 |
-
FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
72 |
|
73 |
Examples:
|
74 |
>>> faireval = evaluate.load("hpi-dhc/FairEval")
|
75 |
>>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
76 |
>>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
77 |
-
>>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count)
|
78 |
>>> print(results)
|
79 |
{'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
|
80 |
'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
|
|
|
57 |
Args:
|
58 |
predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
|
59 |
references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
|
60 |
+
mode: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
61 |
+
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
62 |
+
- 'fair': default fair score calculation.
|
63 |
+
- 'weighted': custom score calculation with the weights passed.
|
64 |
+
weights: dictionary with the weight of each error for the custom score calculation.
|
65 |
+
If none is passed and the mode is set to 'weighted', the following is used:
|
66 |
+
{"TP": {"TP": 1},
|
67 |
+
"FP": {"FP": 1},
|
68 |
+
"FN": {"FN": 1},
|
69 |
+
"LE": {"TP": 0, "FP": 0.5, "FN": 0.5},
|
70 |
+
"BE": {"TP": 0.5, "FP": 0.25, "FN": 0.25},
|
71 |
+
"LBE": {"TP": 0, "FP": 0.5, "FN": 0.5}}
|
72 |
+
error_format: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc:. Default value is 'count'.
|
73 |
+
- 'count': absolute count of each parameter.
|
74 |
+
- 'error_ratio': precentage with respect to the total errors that each parameter represents.
|
75 |
+
- 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
|
76 |
zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
|
77 |
suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
|
78 |
scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
|
|
|
81 |
- Overall error parameter count (or ratio) and resulting scores.
|
82 |
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
|
83 |
|
84 |
+
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or
|
85 |
+
'weighted', TP remains the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
86 |
|
87 |
Examples:
|
88 |
>>> faireval = evaluate.load("hpi-dhc/FairEval")
|
89 |
>>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
90 |
>>> ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
|
91 |
+
>>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count')
|
92 |
>>> print(results)
|
93 |
{'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'TP': 0,'FP': 0,'FN': 0,'LE': 0,'BE': 1,'LBE': 0},
|
94 |
'PER': {'precision': 1.0,'recall': 1.0,'f1': 1.0,'TP': 1,'FP': 0,'FN': 0,'LE': 0,'BE': 0,'LBE': 0},
|
HFFE_use_cases.pdf
ADDED
Binary file (86.4 kB). View file
|
|
README.md
CHANGED
@@ -21,7 +21,10 @@ To address these issues, this metric provides an implementation of FairEval, pro
|
|
21 |
## How to Use
|
22 |
FairEval outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
|
23 |
spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
|
24 |
-
switching the argument **mode**.
|
|
|
|
|
|
|
25 |
|
26 |
The minimal example is:
|
27 |
|
@@ -39,8 +42,15 @@ Predicted sentences must have the same number of tokens as the references.
|
|
39 |
- **references** *(list)*: list of ground truth reference labels.
|
40 |
|
41 |
The optional arguments are:
|
42 |
-
- **mode** *(str)*: 'fair'
|
43 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
- **zero_division** *(str)*: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
|
45 |
- **suffix** *(boolean)*: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
|
46 |
- **scheme** *(str)*: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
|
@@ -50,10 +60,11 @@ A dictionary with:
|
|
50 |
- Overall error parameter count (or ratio) and resulting scores.
|
51 |
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
|
52 |
|
53 |
-
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair'
|
54 |
-
FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
55 |
|
56 |
### Examples
|
|
|
57 |
Considering the following input annotated sentences:
|
58 |
```python
|
59 |
>>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
|
|
|
21 |
## How to Use
|
22 |
FairEval outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
|
23 |
spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
|
24 |
+
switching the argument **mode**.
|
25 |
+
|
26 |
+
The user can also choose to see the metric parameters (TP, FP...) as absolute count, as a percentage with respect to the
|
27 |
+
total number of errors or with respect to the total number of ground truth entities through the argument **error_format**.
|
28 |
|
29 |
The minimal example is:
|
30 |
|
|
|
42 |
- **references** *(list)*: list of ground truth reference labels.
|
43 |
|
44 |
The optional arguments are:
|
45 |
+
- **mode** *(str)*: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
|
46 |
+
- 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
|
47 |
+
- 'fair': default fair score calculation.
|
48 |
+
- 'weighted': custom score calculation with the weights passed.
|
49 |
+
- **weights** *(dict)*: dictionary with the weight of each error for the custom score calculation.
|
50 |
+
- **error_format** *(str)*: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc. Default value is 'count'.
|
51 |
+
- 'count': absolute count of each parameter.
|
52 |
+
- 'error_ratio': precentage with respect to the total errors that each parameter represents.
|
53 |
+
- 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
|
54 |
- **zero_division** *(str)*: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
|
55 |
- **suffix** *(boolean)*: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
|
56 |
- **scheme** *(str)*: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
|
|
|
60 |
- Overall error parameter count (or ratio) and resulting scores.
|
61 |
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
|
62 |
|
63 |
+
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or 'weighted',
|
64 |
+
TP remain the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
|
65 |
|
66 |
### Examples
|
67 |
+
A comprehensive set of side-by-side examples is shown in.
|
68 |
Considering the following input annotated sentences:
|
69 |
```python
|
70 |
>>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
|