File size: 12,810 Bytes
95760fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402e851
 
061093f
95760fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894070c
95760fd
894070c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95760fd
 
 
 
894070c
95760fd
894070c
95760fd
894070c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95760fd
894070c
 
95760fd
894070c
 
 
 
 
95760fd
 
 
 
 
 
 
 
 
894070c
 
 
 
95760fd
894070c
 
95760fd
894070c
 
 
 
 
95760fd
 
 
 
 
894070c
95760fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894070c
 
 
 
 
 
 
402e851
95760fd
894070c
 
 
 
 
 
 
 
 
 
95760fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dade12d
95760fd
dade12d
95760fd
dade12d
95760fd
402e851
894070c
 
 
 
 
dade12d
894070c
 
dade12d
080a647
 
 
 
 
 
894070c
080a647
dade12d
95760fd
 
 
 
894070c
dade12d
9f95881
 
95760fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfd80c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import moviepy.editor as mp
from flask import Flask, request, jsonify
from flask_cors import CORS
import requests
from io import BytesIO
import speech_recognition as sr
import io
import fitz  # PyMuPDF for working with PDFs
import numpy as np
import cv2
from flask_caching import Cache

from utils.audioEmbedding.index import extract_audio_embeddings
from utils.videoEmbedding.index import get_video_embedding
from utils.imageToText.index import extract_text
from utils.sentanceEmbedding.index import get_text_vector , get_text_discription_vector
from utils.imageEmbedding.index import get_image_embedding
from utils.similarityScore import get_all_similarities
from utils.objectDetection.index import detect_objects



app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'})  # You can choose a caching type based on your requirements
CORS(app)
import moviepy.editor as mp
import tempfile

def get_face_locations(binary_data):
    # Convert binary image data to numpy array
    print(1)
    nparr = np.frombuffer(binary_data, np.uint8)
    image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
    
    # Load the pre-trained face detection model
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

    # Convert the image to grayscale
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Detect faces in the image
    faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

    # Extract face locations
    print(2)
    face_locations = []
    for (x, y, w, h) in faces:
        face_locations.append({"top": y, "right": x + w, "bottom": y + h, "left": x})
    print(3)
    return face_locations

def seperate_image_text_from_pdf(pdf_url):
    # List to store page information
    try:
        pages_info = []

        # Fetch the PDF from the URL
        response = requests.get(pdf_url)

        if response.status_code == 200:
            # Create a temporary file to save the PDF data
            with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
                tmp_file.write(response.content)
                tmp_file_path = tmp_file.name

            # Open the PDF
            pdf = fitz.open(tmp_file_path)

            # Iterate through each page
            for page_num in range(len(pdf)):
                page = pdf.load_page(page_num)

                # Extract text
                text = page.get_text()

                # Count images
                image_list = page.get_images(full=True)

                # Convert images to BytesIO and store in a list
                images_bytes = []
                for img_index, img_info in enumerate(image_list):
                    xref = img_info[0]
                    base_image = pdf.extract_image(xref)
                    image_bytes = base_image["image"]
                    images_bytes.append(image_bytes)

                # Store page information in a dictionary
                page_info = {
                    "pgno": page_num + 1,
                    "images": images_bytes,
                    "text": text
                }

                # Append page information to the list
                pages_info.append(page_info)

            # Close the PDF
            pdf.close()

            # Clean up the temporary file
            import os
            os.unlink(tmp_file_path)
        else:
            print("Failed to fetch the PDF from the URL.")
    except Exception as e:
        print("An error occurred:", e)
        return "Error"

    return pages_info

def pdf_image_text_embedding_and_text_embedding(pages_info):
    try:
    # List to store page embeddings
        page_embeddings = []

        # Iterate through each page
        for page in pages_info:
            # Extract text from the page
            text = page["text"]

            # Extract images from the page
            images = page["images"]

            # List to store image embeddings
            image_embeddings = []

            # Iterate through each image
            for image in images:
                # Get the image embedding
                image_embedding = get_image_embedding(image)
                extracted_text = extract_text(image)
                # Append the image embedding to the list
                image_embeddings.append({"image_embedding": image_embedding.tolist() ,"extracted_text":extracted_text})

            # Get the text embedding

            # Store the page embeddings in a dictionary
            page_embedding = {
                "images": image_embeddings,
                "text": text,
            }

            # Append the page embedding to the list
            page_embeddings.append(page_embedding)

        return page_embeddings
    except Exception as e:
        print("An error occurred:", e)
        return "Error"
    

def separate_audio_from_video(video_url):
    try:
        # Load the video file
        video = mp.VideoFileClip(video_url)

        # Extract audio
        audio = video.audio

        # Create a temporary file to write the audio data
        try :
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
                temp_audio_filename = temp_audio_file.name

                # Write the audio data to the temporary file
                audio.write_audiofile(temp_audio_filename)

                # Read the audio data from the temporary file as bytes
                with open(temp_audio_filename, "rb") as f:
                    audio_bytes = f.read()
        except Exception as e:
            return "Error"

        return audio_bytes

    except Exception as e:
        print("An error occurred:", e)
        return "Error"

@cache.cached(timeout=300)
@app.route('/get_text_embedding', methods=['POST'])
def get_text_embedding_route():
    try:
        text = request.json.get("text")
        text_embedding = get_text_vector(text)
        return jsonify({"text_embedding": text_embedding}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500


@cache.cached(timeout=300)
@app.route('/extract_audio_text_and_embedding', methods=['POST'])
def get_audio_embedding_route():
    audio_url = request.json.get('audio_url')
    print(audio_url)
    response = requests.get(audio_url)
    audio_data = response.content
    audio_embedding = extract_audio_embeddings(audio_data)
    audio_embedding_list = audio_embedding
    audio_file = BytesIO(audio_data)
    r = sr.Recognizer()
    with sr.AudioFile(audio_file) as source:
        audio_data = r.record(source)
    extracted_text = ""
    try:
        text = r.recognize_google(audio_data)
        extracted_text = text
    except Exception as e:
        print(e)
    return jsonify({"extracted_text": extracted_text, "audio_embedding": audio_embedding_list}), 200

# Route to get image embeddings
@cache.cached(timeout=300)
@app.route('/extract_image_text_and_embedding', methods=['POST'])
def get_image_embedding_route():
    try:
        image_url = request.json.get("imageUrl")
        print(image_url)
        response = requests.get(image_url)
        if response.status_code != 200:
            return jsonify({"error": "Failed to download image"}), 500
        binary_data = response.content
        extracted_text = extract_text(binary_data)
        image_embedding = get_image_embedding(binary_data)
        image_embedding_list = image_embedding.tolist()
        return jsonify({"image_embedding": image_embedding_list,"extracted_text":extracted_text}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500

# Route to get video embeddings
@cache.cached(timeout=300)
@app.route('/extract_video_text_and_embedding', methods=['POST'])
def get_video_embedding_route():
    try:
        video_url = request.json.get("videoUrl")
        try:
            audio_data = separate_audio_from_video(video_url)
        except Exception as e:
            return jsonify({"error": "Failed to extract audio from video 1"}), 500
        try:
            audio_embedding = extract_audio_embeddings(audio_data)
        except Exception as e:
            return jsonify({"error": "Failed to extract audio embeddings 2 "+e}), 500
        audio_embedding_list = audio_embedding
        try :
            audio_file = io.BytesIO(audio_data)
        except Exception as e:
            return jsonify({"error": "Failed to extract audio embeddings 3"}), 500
        try :
            r = sr.Recognizer()
            with sr.AudioFile(audio_file) as source:
                audio_data = r.record(source)
        except Exception as e:
            return jsonify({"error": "Failed to extract audio embeddings 4"}), 500
        extracted_text = ""
        try:
            text = r.recognize_google(audio_data)
            extracted_text = text
        except Exception as e:
            print(e)
        video_embedding = get_video_embedding(video_url)
        return jsonify({"video_embedding": video_embedding,"extracted_audio_text": extracted_text, "audio_embedding": audio_embedding_list}), 200

    except Exception as e:
        print(e)
        return jsonify({"error": str(e)}), 500

@cache.cached(timeout=300)
@app.route('/extract_pdf_text_and_embedding', methods=['POST'])
def extract_pdf_text_and_embedding():
    list = []
    try:
        list.append(1)
        pdf_url = request.json.get("pdfUrl")
        list.append(2)
        print(1)
        pages_info = "Error"
        try :
            pages_info = seperate_image_text_from_pdf(pdf_url)
        except Exception as e:
            print(e)
            return jsonify({"error": "Failed to fetch the PDF from the URL"}), 500
        list.append(3)
        if(pages_info == "Error"):
            return jsonify({"error": "Failed to fetch the PDF from the URL seperate_image_text_from_pdf "}), 500
        list.append(4)
        print(pages_info)
        try:
            content = pdf_image_text_embedding_and_text_embedding(pages_info)
        except Exception as e1:
            print(e1)
            return jsonify({"error": "An error occurred 1 while processing the PDF"}), 500
        if content == "Error":
            return jsonify({"error": "An error occurred 2 while processing the PDF"}), 500
        list.append(5)
        print(content)
        return jsonify({"content": content}), 200

    except Exception as e:
        print(e)
        return jsonify({"error": str(list)}), 500
    finally:
        print("kasi",list)

# Route to get text description embeddings
@cache.cached(timeout=300)
@app.route('/getTextDescriptionEmbedding', methods=['POST'])
def get_text_description_embedding_route():
    try:
        text = request.json.get("text")
        text_description_embedding = get_text_discription_vector(text)
        return jsonify({"text_description_embedding": text_description_embedding.tolist()}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500



# Route to get object detection results
@cache.cached(timeout=300)
@app.route('/detectObjects', methods=['POST'])
def detect_objects_route():
    try:
        image_url = request.json.get("imageUrl")
        response = requests.get(image_url)
        if response.status_code != 200:
            return jsonify({"error": "Failed to download image"}), 500
        binary_data = response.content
        object_detection_results = detect_objects(binary_data)
        return jsonify({"object_detection_results": object_detection_results}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500

# Route to get face locations
@cache.cached(timeout=300)
@app.route('/getFaceLocations', methods=['POST'])
def get_face_locations_route():
    try:
        image_url = request.json.get("imageUrl")
        response = requests.get(image_url)
        print(11)
        if response.status_code != 200:
            return jsonify({"error": "Failed to download image"}), 500
        print(22)
        binary_data = response.content
        face_locations = get_face_locations(binary_data)
        print(33)
        print("ok",face_locations)
        return jsonify({"face_locations": str(face_locations)}), 200

    except Exception as e:
        print(e)
        return jsonify({"error": str(e)}), 500

# Route to get similarity score
@cache.cached(timeout=300)
@app.route('/getSimilarityScore', methods=['POST'])
def get_similarity_score_route():
    try:
        embedding1 = request.json.get("embedding1")
        embedding2 = request.json.get("embedding2")
        # Assuming embeddings are provided as lists
        similarity_score = get_all_similarities(embedding1, embedding2)
        return jsonify({"similarity_score": similarity_score}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500