VistaDream / ops /eval.py
hpwang's picture
[Init]
fd5e0f7
raw
history blame
2.09 kB
import cv2
from PIL import Image
import numpy as np
from tqdm import tqdm
from ops.llava import Llava
class llava_iqa():
def __init__(self) -> None:
self._questions()
self.llava = Llava(device='cuda')
def _questions(self):
# quailty, noise, structure, texture
self.questions = {'noise-free':'Is the image free of noise or distortion',
'sharp':'Does the image show clear objects and sharp edges',
'structure':'Is the overall scene coherent and realistic in terms of layout and proportions in this image',
'detail':'Does this image show detailed textures and materials',
'quality':'Is this image overall a high quality image with clear objects, sharp edges, nice color, good overall structure, and good visual quailty'}
def _load_renderings(self,video_fn):
capturer = cv2.VideoCapture(video_fn)
frames = []
while True:
ret,frame = capturer.read()
if ret == False or frame is None: break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame.astype(np.uint8))
frames.append(frame)
# random sample...
idxs = np.random.permutation(len(frames))[0:50]
frames = [frames[i] for i in idxs]
return frames
def __call__(self,video_fn=f'data/vistadream/bust/video_rgb.mp4'):
results = {}
renderings = self._load_renderings(video_fn)
for key,question in self.questions.items():
results[key] = []
query = f'<image>\n USER: {question}, just anwser with yes or no? \n ASSISTANT: '
for rendering in renderings:
prompt = self.llava(rendering,query)
split = str.rfind(prompt,'ASSISTANT: ') + len(f'ASSISTANT: ')
prompt = prompt[split+1:]
if prompt[0:2] == 'Ye': results[key].append(1)
else: results[key].append(0)
for key,val in results.items:
results[key] = np.mean(np.array(val))
return results