VistaDream / ops /utils.py
hpwang's picture
[Init]
fd5e0f7
import os
import cv2
import torch
import matplotlib
import numpy as np
import open3d as o3d
from PIL import Image
from copy import deepcopy
from omegaconf import OmegaConf
from scipy.spatial import cKDTree
def gen_config(cfg_path):
return OmegaConf.load(cfg_path)
def get_focal_from_fov(new_fov, H, W):
# NOTE: top-left pixel should be (0,0)
if W >= H:
f = (W / 2.0) / np.tan(np.deg2rad(new_fov / 2.0))
else:
f = (H / 2.0) / np.tan(np.deg2rad(new_fov / 2.0))
return f
def get_intrins_from_fov(new_fov, H, W):
# NOTE: top-left pixel should be (0,0)
f = get_focal_from_fov(new_fov,H,W)
new_cu = (W / 2.0) - 0.5
new_cv = (H / 2.0) - 0.5
new_intrins = np.array([
[f, 0, new_cu ],
[0, f, new_cv ],
[0, 0, 1 ]
])
return new_intrins
def dpt2xyz(dpt,intrinsic):
# get grid
height, width = dpt.shape[0:2]
grid_u = np.arange(width)[None,:].repeat(height,axis=0)
grid_v = np.arange(height)[:,None].repeat(width,axis=1)
grid = np.concatenate([grid_u[:,:,None],grid_v[:,:,None],np.ones_like(grid_v)[:,:,None]],axis=-1)
uvz = grid * dpt[:,:,None]
# inv intrinsic
inv_intrinsic = np.linalg.inv(intrinsic)
xyz = np.einsum(f'ab,hwb->hwa',inv_intrinsic,uvz)
return xyz
def dpt2xyz_torch(dpt,intrinsic):
# get grid
height, width = dpt.shape[0:2]
grid_u = torch.arange(width)[None,:].repeat(height,1)
grid_v = torch.arange(height)[:,None].repeat(1,width)
grid = torch.concatenate([grid_u[:,:,None],grid_v[:,:,None],torch.ones_like(grid_v)[:,:,None]],axis=-1).to(dpt)
uvz = grid * dpt[:,:,None]
# inv intrinsic
inv_intrinsic = torch.linalg.inv(intrinsic)
xyz = torch.einsum(f'ab,hwb->hwa',inv_intrinsic,uvz)
return xyz
def visual_pcd(xyz, color=None, normal = True):
if hasattr(xyz,'ndim'):
xyz_norm = np.mean(np.sqrt(np.sum(np.square(xyz),axis=1)))
xyz = xyz / xyz_norm
xyz = xyz.reshape(-1,3)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
else: pcd = xyz
if color is not None:
color = color.reshape(-1,3)
pcd.colors = o3d.utility.Vector3dVector(color)
if normal:
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(0.2, 20))
o3d.visualization.draw_geometries([pcd])
def visual_pcds(xyzs, normal = True):
pcds = []
for xyz in xyzs:
if hasattr(xyz,'ndim'):
# xyz_norm = np.mean(np.sqrt(np.sum(np.square(xyz),axis=1)))
# xyz = xyz / xyz_norm
xyz = xyz.reshape(-1,3)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
pcd.paint_uniform_color(np.random.rand(3))
else: pcd = xyz
if normal:
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(0.2, 20))
pcds.append(pcd)
o3d.visualization.draw_geometries(pcds)
def save_pic(input_pic:np.array,save_fn,normalize=True):
# avoid replace
pic = deepcopy(input_pic).astype(np.float32)
pic = np.nan_to_num(pic)
if normalize:
vmin = np.percentile(pic, 2)
vmax = np.percentile(pic, 98)
pic = (pic - vmin) / (vmax - vmin)
pic = (pic * 255.0).clip(0, 255)
if save_fn is not None:
pic_save = Image.fromarray(pic.astype(np.uint8))
pic_save.save(save_fn)
return pic
def depth_colorize(dpt,sky_mask=None):
cm = matplotlib.colormaps["Spectral"]
depth = dpt_normalize(dpt,sky_mask)
img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # value from 0 to 1
return img_colored_np
def dpt_normalize(dpt, sky_mask = None):
if sky_mask is not None:
pic = dpt[~sky_mask]
else:
pic = dpt
vmin = np.percentile(pic, 2)
vmax = np.percentile(pic, 98)
dpt = (deepcopy(dpt) - vmin) / (vmax - vmin)
if sky_mask is not None:
dpt[sky_mask] = 1.
return dpt
def transform_points(pts,transform):
h,w=transform.shape
if h==3 and w==3:
return pts @ transform.T
if h==3 and w==4:
return pts @ transform[:,:3].T + transform[:,3:].T
elif h==4 and w==4:
return pts @ transform[0:3,:3].T + transform[0:3,3:].T
else: raise NotImplementedError
def get_nml_from_quant(quant):
'''
input N*4
outut N*3
follow https://arxiv.org/pdf/2404.17774
'''
w=quant[:,0]
x=quant[:,1]
y=quant[:,2]
z=quant[:,3]
n0 = 2*x*z+2*y*w
n1 = 2*y*z-2*x*w
n2 = 1-2*x*x-2*y*y
nml = torch.cat((n0[:,None],n1[:,None],n2[:,None]),dim=1)
return nml
def quaternion_from_matrix(M):
m00 = M[..., 0, 0]
m01 = M[..., 0, 1]
m02 = M[..., 0, 2]
m10 = M[..., 1, 0]
m11 = M[..., 1, 1]
m12 = M[..., 1, 2]
m20 = M[..., 2, 0]
m21 = M[..., 2, 1]
m22 = M[..., 2, 2]
K = torch.zeros((len(M),4,4)).to(M)
K[:,0,0] = m00 - m11 - m22
K[:,1,0] = m01 + m10
K[:,1,1] = m11 - m00 - m22
K[:,2,0] = m02 + m20
K[:,2,1] = m12 + m21
K[:,2,2] = m22 - m00 - m11
K[:,3,0] = m21 - m12
K[:,3,1] = m02 - m20
K[:,3,2] = m10 - m01
K[:,3,3] = m00 + m11 + m22
K = K/3
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = torch.linalg.eigh(K)
q = V[torch.arange(len(V)),:,torch.argmax(w,dim=1)]
q = q[:,[3, 0, 1, 2]]
for i in range(len(q)):
if q[i,0]<0.:
q[i] = -q[i]
return q
def numpy_quaternion_from_matrix(M):
H,W = M.shape[0:2]
M = M.reshape(-1,3,3)
m00 = M[..., 0, 0]
m01 = M[..., 0, 1]
m02 = M[..., 0, 2]
m10 = M[..., 1, 0]
m11 = M[..., 1, 1]
m12 = M[..., 1, 2]
m20 = M[..., 2, 0]
m21 = M[..., 2, 1]
m22 = M[..., 2, 2]
K = np.zeros((len(M),4,4))
K[...,0,0] = m00 - m11 - m22
K[...,1,0] = m01 + m10
K[...,1,1] = m11 - m00 - m22
K[...,2,0] = m02 + m20
K[...,2,1] = m12 + m21
K[...,2,2] = m22 - m00 - m11
K[...,3,0] = m21 - m12
K[...,3,1] = m02 - m20
K[...,3,2] = m10 - m01
K[...,3,3] = m00 + m11 + m22
K = K/3
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[np.arange(len(V)),:,np.argmax(w,axis=1)]
q = q[...,[3, 0, 1, 2]]
for i in range(len(q)):
if q[i,0]<0.:
q[i] = -q[i]
q = q.reshape(H,W,4)
return q
def numpy_normalize(input):
input = input / (np.sqrt(np.sum(np.square(input),axis=-1,keepdims=True))+1e-5)
return input
class suppress_stdout_stderr(object):
'''
Avoid terminal output of diffusion processings!
A context manager for doing a "deep suppression" of stdout and stderr in
Python, i.e. will suppress all print, even if the print originates in a
compiled C/Fortran sub-function.
This will not suppress raised exceptions, since exceptions are printed
to stderr just before a script exits, and after the context manager has
exited (at least, I think that is why it lets exceptions through).
'''
def __init__(self):
# Open a pair of null files
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
self.save_fds = (os.dup(1), os.dup(2))
def __enter__(self):
# Assign the null pointers to stdout and stderr.
os.dup2(self.null_fds[0], 1)
os.dup2(self.null_fds[1], 2)
def __exit__(self, *_):
# Re-assign the real stdout/stderr back to (1) and (2)
os.dup2(self.save_fds[0], 1)
os.dup2(self.save_fds[1], 2)
# Close the null files
os.close(self.null_fds[0])
os.close(self.null_fds[1])
import torch.nn.functional as F
def nei_delta(input,pad=2):
if not type(input) is torch.Tensor:
input = torch.from_numpy(input.astype(np.float32))
if len(input.shape) < 3:
input = input[:,:,None]
h,w,c = input.shape
# reshape
input = input.permute(2,0,1)[None]
input = F.pad(input, pad=(pad,pad,pad,pad), mode='replicate')
kernel = 2*pad + 1
input = F.unfold(input,[kernel,kernel],padding=0)
input = input.reshape(c,-1,h,w).permute(2,3,0,1).squeeze() # hw(3)*25
return torch.amax(input,dim=-1),torch.amin(input,dim=-1),input
def inpaint_mask(render_dpt,render_rgb):
# edge filter delta thres
valid_dpt = render_dpt[render_dpt>1e-3]
valid_dpt = torch.sort(valid_dpt).values
max = valid_dpt[int(.85*len(valid_dpt))]
min = valid_dpt[int(.15*len(valid_dpt))]
ths = (max-min) * 0.2
# nei check
nei_max, nei_min, _ = nei_delta(render_dpt,pad=1)
edge_mask = (nei_max - nei_min) > ths
# render hole
hole_mask = render_dpt < 1e-3
# whole mask -- original noise and sparse
mask = edge_mask | hole_mask
mask = mask.cpu().float().numpy()
# modify rgb sightly for small holes : blur and sharpen
render_rgb = render_rgb.detach().cpu().numpy()
render_rgb = (render_rgb*255).astype(np.uint8)
render_rgb_blur = cv2.medianBlur(render_rgb,5)
render_rgb[mask>.5] = render_rgb_blur[mask>.5] # blur and replace small holes
render_rgb = torch.from_numpy((render_rgb/255).astype(np.float32)).to(render_dpt)
# slightly clean mask
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask,kernel,iterations=2)
mask = cv2.dilate(mask,kernel,iterations=7)
mask = mask > 0.5
return mask,render_rgb
def alpha_inpaint_mask(render_alpha):
render_alpha = render_alpha.detach().squeeze().cpu().numpy()
paint_mask = 1.-np.around(render_alpha)
# slightly clean mask
kernel = np.ones((5,5),np.uint8)
paint_mask = cv2.erode(paint_mask,kernel,iterations=1)
paint_mask = cv2.dilate(paint_mask,kernel,iterations=3)
paint_mask = paint_mask > 0.5
return paint_mask
def edge_filter(metric_dpt,sky=None,times=0.1):
sky = np.zeros_like(metric_dpt,bool) if sky is None else sky
_max = np.percentile(metric_dpt[~sky],95)
_min = np.percentile(metric_dpt[~sky], 5)
_range = _max - _min
nei_max,nei_min,_ = nei_delta(metric_dpt)
delta = (nei_max-nei_min).numpy()
edge = delta > times*_range
return edge
def fill_mask_with_nearest(imgs, mask):
# mask and un-mask pixel coors
mask_coords = np.column_stack(np.where(mask > .5))
non_mask_coords = np.column_stack(np.where(mask < .5))
# kd-tree on un-masked pixels
tree = cKDTree(non_mask_coords)
# nn search of masked pixels
_, idxs = tree.query(mask_coords)
# replace and fill
for i, coord in enumerate(mask_coords):
nearest_coord = non_mask_coords[idxs[i]]
for img in imgs:
img[coord[0], coord[1]] = img[nearest_coord[0], nearest_coord[1]]
return imgs
def edge_rectify(metric_dpt,rgb,sky=None):
edge = edge_filter(metric_dpt,sky)
process_rgb = deepcopy(rgb)
metric_dpt,process_rgb = fill_mask_with_nearest([metric_dpt,process_rgb],edge)
return metric_dpt,process_rgb
from plyfile import PlyData, PlyElement
def color2feat(color):
max_sh_degree = 3
fused_color = (color-0.5)/0.28209479177387814
features = np.zeros((fused_color.shape[0], 3, (max_sh_degree + 1) ** 2))
features = torch.from_numpy(features.astype(np.float32))
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
features_dc = features[:,:,0:1]
features_rest = features[:,:,1: ]
return features_dc,features_rest
def construct_list_of_attributes(features_dc,features_rest,scale,rotation):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(features_dc.shape[1]*features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(features_rest.shape[1]*features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(scale.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(scene,path):
xyz = torch.cat([gf.xyz.reshape(-1,3) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
scale = torch.cat([gf.scale.reshape(-1,3) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
opacities = torch.cat([gf.opacity.reshape(-1) for gf in scene.gaussian_frames],dim=0)[:,None].detach().cpu().numpy()
rotation = torch.cat([gf.rotation.reshape(-1,4) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
rgb = torch.sigmoid(torch.cat([gf.rgb.reshape(-1,3) for gf in scene.gaussian_frames],dim=0))
# rgb
features_dc, features_rest = color2feat(rgb)
f_dc = features_dc.flatten(start_dim=1).detach().cpu().numpy()
f_rest = features_rest.flatten(start_dim=1).detach().cpu().numpy()
normals = np.zeros_like(xyz)
# save
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc,features_rest,scale,rotation)]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)