Spaces:
Runtime error
Runtime error
File size: 9,655 Bytes
480bfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import warnings
import numbers
import numpy as np
import torch
from torch.nn import functional as F
from .. import models, utils
from ..external_models import lpips
class PPL:
"""
This class evaluates the PPL metric of a generator.
Arguments:
G (Generator)
prior_generator (PriorGenerator)
device (int, str, torch.device, optional): The device
to use for calculations. By default, the same device
is chosen as the parameters in `generator` reside on.
num_samples (int): Number of samples of reals and fakes
to gather statistics for which are used for calculating
the metric. Default value is 50 000.
epsilon (float): Perturbation value. Default value is 1e-4.
use_dlatent (bool): Measure PPL against the dlatents instead
of the latents. Default value is True.
full_sampling (bool): Measure on a random interpolation between
two inputs. Default value is False.
crop (float, list, optional): Crop values that should be in the
range [0, 1] with 1 representing the entire data length.
If single value this will be the amount cropped from all
sides of the data. If a list of same length as number of
data dimensions, each crop is mirrored to both sides of
each respective dimension. If the length is 2 * number
of dimensions the crop values for the start and end of
a dimension may be different.
Example 1:
We have 1d data of length 10. We want to crop 1
from the start and end of the data. We then need
to use `crop=0.1` or `crop=[0.1]` or `crop=[0.1, 0.9]`.
Example 2:
We have 2d data (images) of size 10, 10 (height, width)
and we want to use only the top left quarter of the image
we would use `crop=[0, 0.5, 0, 0.5]`.
lpips_model (nn.Module): A model that returns feature the distance
between two inputs. Default value is the LPIPS VGG16 model.
lpips_size (int, optional): Resize any data fed to `lpips_model` by scaling
the data so that its smallest side is the same size as this
argument. Only has a default value of 256 if `lpips_model` is unspecified.
"""
FFHQ_CROP = [1/8 * 3, 1/8 * 7, 1/8 * 2, 1/8 * 6]
def __init__(self,
G,
prior_generator,
device=None,
num_samples=50000,
epsilon=1e-4,
use_dlatent=True,
full_sampling=False,
crop=None,
lpips_model=None,
lpips_size=None):
device_ids = []
if isinstance(G, torch.nn.DataParallel):
device_ids = G.device_ids
G = utils.unwrap_module(G)
assert isinstance(G, models.Generator)
assert isinstance(prior_generator, utils.PriorGenerator)
if device is None:
device = next(G.parameters()).device
else:
device = torch.device(device)
assert torch.device(prior_generator.device) == device, \
'Prior generator device ({}) '.format(torch.device(prior_generator)) + \
'is not the same as the specified (or infered from the model)' + \
'device ({}) for the PPL evaluation.'.format(device)
G.eval().to(device)
self.G_mapping = G.G_mapping
self.G_synthesis = G.G_synthesis
if device_ids:
self.G_mapping = torch.nn.DataParallel(self.G_mapping, device_ids=device_ids)
self.G_synthesis = torch.nn.DataParallel(self.G_synthesis, device_ids=device_ids)
self.prior_generator = prior_generator
self.device = device
self.num_samples = num_samples
self.epsilon = epsilon
self.use_dlatent = use_dlatent
self.full_sampling = full_sampling
self.crop = crop
self.batch_size = self.prior_generator.batch_size
if lpips_model is None:
warnings.warn(
'Using default LPIPS distance metric based on VGG 16. ' + \
'This metric will only work on image data where values are in ' + \
'the range [-1, 1], please specify an lpips module if you want ' + \
'to use other kinds of data formats.'
)
lpips_model = lpips.LPIPS_VGG16(pixel_min=-1, pixel_max=1)
if device_ids:
lpips_model = torch.nn.DataParallel(lpips_model, device_ids=device_ids)
lpips_size = lpips_size or 256
self.lpips_model = lpips_model.eval().to(device)
self.lpips_size = lpips_size
def _scale_for_lpips(self, data):
if not self.lpips_size:
return data
scale_factor = self.lpips_size / min(data.size()[2:])
if scale_factor == 1:
return data
mode = 'nearest'
if scale_factor < 1:
mode = 'area'
return F.interpolate(data, scale_factor=scale_factor, mode=mode)
def crop_data(self, data):
if not self.crop:
return data
dim = data.dim() - 2
if isinstance(self.crop, numbers.Number):
self.crop = [self.crop]
else:
self.crop = list(self.crop)
if len(self.crop) == 1:
self.crop = [self.crop[0], (1 if self.crop[0] < 1 else size) - self.crop[0]] * dim
if len(self.crop) == dim:
crop = self.crop
self.crop = []
for value in crop:
self.crop += [value, (1 if value < 1 else size) - value]
assert len(self.crop) == 2 * dim, 'Crop values has to be ' + \
'a single value or a sequence of values of the same ' + \
'size as number of dimensions of the data or twice of that.'
pre_index = [Ellipsis]
post_index = [slice(None, None, None) for _ in range(dim)]
for i in range(0, 2 * dim, 2):
j = i // 2
size = data.size(2 + j)
crop_min, crop_max = self.crop[i:i + 2]
if crop_max < 1:
crop_min, crop_max = crop_min * size, crop_max * size
crop_min, crop_max = max(0, int(crop_min)), min(size, int(crop_max))
dim_index = post_index.copy()
dim_index[j] = slice(crop_min, crop_max, None)
data = data[pre_index + dim_index]
return data
def prep_latents(self, latents):
if self.full_sampling:
lerp = utils.slerp
if self.use_dlatent:
lerp = utils.lerp
latents_a, latents_b = latents[:self.batch_size], latents[self.batch_size:]
latents = lerp(
latents_a,
latents_b,
torch.rand(
latents_a.size()[:-1],
dtype=latents_a.dtype,
device=latents_a.device
).unsqueeze(-1)
)
return torch.cat([latents, latents + self.epsilon], dim=0)
def __call__(self, *args, **kwargs):
return self.evaluate(*args, **kwargs)
def evaluate(self, verbose=True):
"""
Evaluate the PPL.
Arguments:
verbose (bool): Write progress to stdout.
Default value is True.
Returns:
ppl (float): Metric value.
"""
distances = []
batch_size = self.batch_size
if self.full_sampling:
batch_size = 2 * batch_size
if verbose:
progress = utils.ProgressWriter(np.ceil(self.num_samples / self.batch_size))
progress.write('PPL: Evaluating metric...', step=False)
for _ in range(0, self.num_samples, self.batch_size):
utils.unwrap_module(self.G_synthesis).static_noise()
latents, latent_labels = self.prior_generator(batch_size=batch_size)
if latent_labels is not None and self.full_sampling:
# Labels should be the same for the first and second half of latents
latent_labels = latent_labels.view(2, -1)[0].repeat(2)
if self.use_dlatent:
with torch.no_grad():
dlatents = self.G_mapping(latents=latents, labels=latent_labels)
dlatents = self.prep_latents(dlatents)
else:
latents = self.prep_latents(latents)
with torch.no_grad():
dlatents = self.G_mapping(latents=latents, labels=latent_labels)
dlatents = dlatents.unsqueeze(1).repeat(1, len(utils.unwrap_module(self.G_synthesis)), 1)
with torch.no_grad():
output = self.G_synthesis(dlatents)
output = self.crop_data(output)
output = self._scale_for_lpips(output)
output_a, output_b = output[:self.batch_size], output[self.batch_size:]
with torch.no_grad():
dist = self.lpips_model(output_a, output_b)
distances.append(dist.cpu() * (1 / self.epsilon ** 2))
if verbose:
progress.step()
if verbose:
progress.write('PPL: Evaluated!', step=False)
progress.close()
distances = torch.cat(distances, dim=0).numpy()
lo = np.percentile(distances, 1, interpolation='lower')
hi = np.percentile(distances, 99, interpolation='higher')
filtered_distances = np.extract(np.logical_and(lo <= distances, distances <= hi), distances)
return float(np.mean(filtered_distances))
|