File size: 61,098 Bytes
480bfbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F


def get_activation(activation):
    """
    Get the module for a specific activation function and its gain if
    it can be calculated.
    Arguments:
        activation (str, callable, nn.Module): String representing the activation.
    Returns:
        activation_module (torch.nn.Module): The module representing
            the activation function.
        gain (float): The gain value. Defaults to 1 if it can not be calculated.
    """
    if isinstance(activation, nn.Module) or callable(activation):
        return activation, 1.
    if isinstance(activation, str):
        activation = activation.lower()
    if activation in [None, 'linear']:
        return nn.Identity(), 1.
    lrelu_strings = ('leaky', 'leakyrely', 'leaky_relu', 'leaky relu', 'lrelu')
    if activation.startswith(lrelu_strings):
        for l_s in lrelu_strings:
            activation = activation.replace(l_s, '')
        slope = ''.join(
            char for char in activation if char.isdigit() or char == '.')
        slope = float(slope) if slope else 0.01
        return nn.LeakyReLU(slope), np.sqrt(2)  # close enough to true gain
    elif activation.startswith('swish'):
        return Swish(affine=activation != 'swish'), np.sqrt(2)
    elif activation in ['relu']:
        return nn.ReLU(), np.sqrt(2)
    elif activation in ['elu']:
        return nn.ELU(), 1.
    elif activation in ['prelu']:
        return nn.PReLU(), np.sqrt(2)
    elif activation in ['rrelu', 'randomrelu']:
        return nn.RReLU(), np.sqrt(2)
    elif activation in ['selu']:
        return nn.SELU(), 1.
    elif activation in ['softplus']:
        return nn.Softplus(), 1
    elif activation in ['softsign']:
        return nn.Softsign(), 1  # unsure about this gain
    elif activation in ['sigmoid', 'logistic']:
        return nn.Sigmoid(), 1.
    elif activation in ['tanh']:
        return nn.Tanh(), 1.
    else:
        raise ValueError(
            'Activation "{}" not available.'.format(activation)
        )


class Swish(nn.Module):
    """
    Performs the 'Swish' non-linear activation function.
    https://arxiv.org/pdf/1710.05941.pdf
    Arguments:
        affine (bool): Multiply the input to sigmoid
            with a learnable scale. Default value is False.
    """
    def __init__(self, affine=False):
        super(Swish, self).__init__()
        if affine:
            self.beta = nn.Parameter(torch.tensor([1.]))
        self.affine = affine

    def forward(self, input, *args, **kwargs):
        """
        Apply the swish non-linear activation function
        and return the results.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        x = input
        if self.affine:
            x *= self.beta
        return x * torch.sigmoid(x)


def _get_weight_and_coef(shape, lr_mul=1, weight_scale=True, gain=1, fill=None):
    """
    Get an intialized weight and its runtime coefficients as an nn.Parameter tensor.
    Arguments:
        shape (tuple, list): Shape of weight tensor.
        lr_mul (float): The learning rate multiplier for
            this weight. Default value is 1.
        weight_scale (bool): Use weight scaling for equalized
            learning rate. Default value is True.
        gain (float): The gain of the weight. Default value is 1.
        fill (float, optional): Instead of initializing the weight
            with scaled normally distributed values, fill it with
            this value. Useful for bias weights.
    Returns:
        weight (nn.Parameter)
    """
    fan_in = np.prod(shape[1:])
    he_std = gain / np.sqrt(fan_in)

    if weight_scale:
        init_std = 1 / lr_mul
        runtime_coef = he_std * lr_mul
    else:
        init_std = he_std / lr_mul
        runtime_coef = lr_mul

    weight = torch.empty(*shape)
    if fill is None:
        weight.normal_(0, init_std)
    else:
        weight.fill_(fill)
    return nn.Parameter(weight), runtime_coef


def _apply_conv(input, *args, transpose=False, **kwargs):
    """
    Perform a 1d, 2d or 3d convolution with specified
    positional and keyword arguments. Which type of
    convolution that is used depends on shape of data.
    Arguments:
        input (torch.Tensor): The input data for the
            convolution.
        *args: Positional arguments for the convolution.
    Keyword Arguments:
        transpose (bool): Transpose the convolution.
            Default value is False
        **kwargs: Keyword arguments for the convolution.
    """
    dim = input.dim() - 2
    conv_fn = getattr(
        F, 'conv{}{}d'.format('_transpose' if transpose else '', dim))
    return conv_fn(input=input, *args, **kwargs)


def _setup_mod_weight_for_t_conv(weight, in_channels, out_channels):
    """
    Reshape a modulated conv weight for use with a transposed convolution.
    Arguments:
        weight (torch.Tensor)
        in_channels (int)
        out_channels (int)
    Returns:
        reshaped_weight (torch.Tensor)
    """
    # [BO]I*k -> BOI*k
    weight = weight.view(
        -1,
        out_channels,
        in_channels,
        *weight.size()[2:]
    )
    # BOI*k -> BIO*k
    weight = weight.transpose(1, 2)
    # BIO*k -> [BI]O*k
    weight = weight.reshape(
        -1,
        out_channels,
        *weight.size()[3:]
    )
    return weight


def _setup_filter_kernel(filter_kernel, gain=1, up_factor=1, dim=2):
    """
    Set up a filter kernel and return it as a tensor.
    Arguments:
        filter_kernel (int, list, torch.tensor, None): The filter kernel
            values to use. If this value is an int, a binomial filter of
            this size is created. If a sequence with a single axis is used,
            it will be expanded to the number of `dims` specified. If value
            is None, a filter of values [1, 1] is used.
        gain (float): Gain of the filter kernel. Default value is 1.
        up_factor (int): Scale factor. Should only be given for upscaling filters.
            Default value is 1.
        dim (int): Number of dimensions of data. Default value is 2.
    Returns:
        filter_kernel_tensor (torch.Tensor)
    """
    filter_kernel = filter_kernel or 2
    if isinstance(filter_kernel, (int, float)):
        def binomial(n, k):
            if k in [1, n]:
                return 1
            return np.math.factorial(n) / (np.math.factorial(k) * np.math.factorial(n - k))
        filter_kernel = [binomial(filter_kernel, k) for k in range(1, filter_kernel + 1)]
    if not torch.is_tensor(filter_kernel):
        filter_kernel = torch.tensor(filter_kernel)
    filter_kernel = filter_kernel.float()
    if filter_kernel.dim() == 1:
        _filter_kernel = filter_kernel.unsqueeze(0)
        while filter_kernel.dim() < dim:
            filter_kernel = torch.matmul(
                filter_kernel.unsqueeze(-1), _filter_kernel)
    assert all(filter_kernel.size(0) == s for s in filter_kernel.size())
    filter_kernel /= filter_kernel.sum()
    filter_kernel *= gain * up_factor ** 2
    return filter_kernel.float()


def _get_layer(layer_class, kwargs, wrap=False, noise=False):
    """
    Create a layer and wrap it in optional
    noise and/or bias/activation layers.
    Arguments:
        layer_class: The class of the layer to construct.
        kwargs (dict): The keyword arguments to use for constructing
            the layer and optionally the bias/activaiton layer.
        wrap (bool): Wrap the layer in an bias/activation layer and
            optionally a noise injection layer. Default value is False.
        noise (bool): Inject noise before the bias/activation wrapper.
            This can only be done when `wrap=True`. Default value is False.
    """
    layer = layer_class(**kwargs)
    if wrap:
        if noise:
            layer = NoiseInjectionWrapper(layer)
        layer = BiasActivationWrapper(layer, **kwargs)
    return layer


class BiasActivationWrapper(nn.Module):
    """
    Wrap a module to add bias and non-linear activation
    to any outputs of that module.
    Arguments:
        layer (nn.Module): The module to wrap.
        features (int, optional): The number of features
            of the output of the `layer`. This argument
            has to be specified if `use_bias=True`.
        use_bias (bool): Add bias to the output.
            Default value is True.
        activation (str, nn.Module, callable, optional):
            non-linear activation function to use.
            Unused if notspecified.
        bias_init (float): Value to initialize bias
            weight with. Default value is 0.
        lr_mul (float): Learning rate multiplier of
            the bias weight. Weights are scaled by
            this value. Default value is 1.
        weight_scale (float): Scale weights for
            equalized learning rate.
            Default value is True.
    """
    def __init__(self,
                 layer,
                 features=None,
                 use_bias=True,
                 activation='linear',
                 bias_init=0,
                 lr_mul=1,
                 weight_scale=True,
                 *args,
                 **kwargs):
        super(BiasActivationWrapper, self).__init__()
        self.layer = layer
        bias = None
        bias_coef = None
        if use_bias:
            assert features, '`features` is required when using bias.'
            bias, bias_coef = _get_weight_and_coef(
                shape=[features],
                lr_mul=lr_mul,
                weight_scale=False,
                fill=bias_init
            )
        self.register_parameter('bias', bias)
        self.bias_coef = bias_coef
        self.act, self.gain = get_activation(activation)

    def forward(self, *args, **kwargs):
        """
        Forward all possitional and keyword arguments
        to the layer wrapped by this module and add
        bias (if set) and run through non-linear activation
        function (if set).
        Arguments:
            *args (positional arguments)
            **kwargs (keyword arguments)
        Returns:
            output (torch.Tensor)
        """
        x = self.layer(*args, **kwargs)
        if self.bias is not None:
            bias = self.bias.view(1, -1, *[1] * (x.dim() - 2))
            if self.bias_coef != 1:
                bias = self.bias_coef * bias
            x += bias
        x = self.act(x)
        if self.gain != 1:
            x *= self.gain
        return x

    def extra_repr(self):
        return 'bias={}'.format(self.bias is not None)


class NoiseInjectionWrapper(nn.Module):
    """
    Wrap a module to add noise scaled by a
    learnable parameter to any outputs of the
    wrapped module.
    Noise is randomized for each output but can
    be set to static noise by calling `static_noise()`
    of this object. This can only be done once data
    has passed through this layer at least once so that
    the shape of the static noise to create is known.
    Check if the shape is known by calling `has_noise_shape()`.
    Arguments:
        layer (nn.Module): The module to wrap.
        same_over_batch (bool): Repeat the same
            noise values over the entire batch
            instead of creating separate noise
            values for each entry in the batch.
            Default value is True.
    """

    def __init__(self, layer, same_over_batch=True):
        super(NoiseInjectionWrapper, self).__init__()
        self.layer = layer
        self.weight = torch.nn.Parameter(torch.zeros(1))
        self.register_buffer('noise_storage', None)
        self.same_over_batch = same_over_batch
        self.random_noise()

    def has_noise_shape(self):
        """
        If this module has had data passed through it
        the noise shape is known and this function returns
        True. Else False.
        Returns:
            noise_shape_known (bool)
        """
        return self.noise_storage is not None

    def random_noise(self):
        """
        Randomize noise for each
        new output.
        """
        self._fixed_noise = False
        if isinstance(self.noise_storage, nn.Parameter):
            noise_storage = self.noise_storage
            del self.noise_storage
            self.register_buffer('noise_storage', noise_storage.data)

    def static_noise(self, trainable=False, noise_tensor=None):
        """
        Set up static noise that can optionally be a trainable
        parameter. Static noise does not change between inputs
        unless the user has altered its values. Returns the tensor
        object that stores the static noise.
        Arguments:
            trainable (bool): Wrap the static noise tensor in
                nn.Parameter to make it trainable. The returned
                tensor will be wrapped.
            noise_tensor (torch.Tensor, optional): A predefined
                static noise tensor. If not passed, one will be
                created.
        """
        assert self.has_noise_shape(), \
            'Noise shape is unknown'
        if noise_tensor is None:
            noise_tensor = self.noise_storage
        else:
            noise_tensor = noise_tensor.to(self.weight)
        if trainable and not isinstance(noise_tensor, nn.Parameter):
            noise_tensor = nn.Parameter(noise_tensor)
        if isinstance(self.noise_storage, nn.Parameter) and not trainable:
            del self.noise_storage
            self.register_buffer('noise_storage', noise_tensor)
        else:
            self.noise_storage = noise_tensor
        self._fixed_noise = True
        return noise_tensor

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        r"""Saves module state to `destination` dictionary, containing a state
        submodule in :meth:`~torch.nn.Module.state_dict`.

        Overridden to ignore the noise storage buffer.

        Arguments:
            destination (dict): a dict where state will be stored
            prefix (str): the prefix for parameters and buffers used in this
                module
        """
        for name, param in self._parameters.items():
            if name != 'noise_storage' and param is not None:
                destination[prefix + name] = param if keep_vars else param.data
        for name, buf in self._buffers.items():
            if name != 'noise_storage' and buf is not None:
                destination[prefix + name] = buf if keep_vars else buf.data

    def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
        r"""Copies parameters and buffers from :attr:`state_dict` into only
        this module, but not its descendants. This is called on every submodule
        in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this
        module in input :attr:`state_dict` is provided as :attr:`local_metadata`.
        For state dicts without metadata, :attr:`local_metadata` is empty.
        Overridden to ignore noise storage buffer.
        """
        key = prefix + 'noise_storage'
        if key in state_dict:
            del state_dict[key]
        return super(NoiseInjectionWrapper, self)._load_from_state_dict(
            state_dict, prefix, *args, **kwargs)

    def forward(self, *args, **kwargs):
        """
        Forward all possitional and keyword arguments
        to the layer wrapped by this module and add
        noise to its outputs before returning them.
        Arguments:
            *args (positional arguments)
            **kwargs (keyword arguments)
        Returns:
            output (torch.Tensor)
        """
        x = self.layer(*args, **kwargs)
        noise_shape = list(x.size())
        noise_shape[1] = 1
        if self.same_over_batch:
            noise_shape[0] = 1
        if self.noise_storage is None or list(self.noise_storage.size()) != noise_shape:
            if not self._fixed_noise:
                self.noise_storage = torch.empty(
                    *noise_shape,
                    dtype=self.weight.dtype,
                    device=self.weight.device
                )
            else:
                assert list(self.noise_storage.size()[2:]) == noise_shape[2:], \
                    'A data size {} has been encountered, '.format(x.size()[2:]) + \
                    'the static noise previously set up does ' + \
                    'not match this size {}'.format(self.noise_storage.size()[2:])
                assert self.noise_storage.size(0) == 1 or self.noise_storage.size(0) == x.size(0), \
                    'Static noise batch size mismatch! ' + \
                    'Noise batch size: {}, '.format(self.noise_storage.size(0)) + \
                    'input batch size: {}'.format(x.size(0))
                assert self.noise_storage.size(1) == 1 or self.noise_storage.size(1) == x.size(1), \
                    'Static noise channel size mismatch! ' + \
                    'Noise channel size: {}, '.format(self.noise_storage.size(1)) + \
                    'input channel size: {}'.format(x.size(1))
        if not self._fixed_noise:
            self.noise_storage.normal_()
        x += self.weight * self.noise_storage
        return x

    def extra_repr(self):
        return 'static_noise={}'.format(self._fixed_noise)


class FilterLayer(nn.Module):
    """
    Apply a filter by using convolution.
    Arguments:
        filter_kernel (torch.Tensor): The filter kernel to use.
            Should be of shape `dims * (k,)` where `k` is the
            kernel size and `dims` is the number of data dimensions
            (excluding batch and channel dimension).
        stride (int): The stride of the convolution.
        pad0 (int): Amount to pad start of each data dimension.
            Default value is 0.
        pad1 (int): Amount to pad end of each data dimension.
            Default value is 0.
        pad_mode (str): The padding mode. Default value is 'constant'.
        pad_constant (float): The constant value to pad with if
            `pad_mode='constant'`. Default value is 0.
    """
    def __init__(self,
                 filter_kernel,
                 stride=1,
                 pad0=0,
                 pad1=0,
                 pad_mode='constant',
                 pad_constant=0,
                 *args,
                 **kwargs):
        super(FilterLayer, self).__init__()
        dim = filter_kernel.dim()
        filter_kernel = filter_kernel.view(1, 1, *filter_kernel.size())
        self.register_buffer('filter_kernel', filter_kernel)
        self.stride = stride
        if pad0 == pad1 and (pad0 == 0 or pad_mode == 'constant' and pad_constant == 0):
            self.fused_pad = True
            self.padding = pad0
        else:
            self.fused_pad = False
            self.padding = [pad0, pad1] * dim
            self.pad_mode = pad_mode
            self.pad_constant = pad_constant

    def forward(self, input, **kwargs):
        """
        Pad the input and run the filter over it
        before returning the new values.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        x = input
        conv_kwargs = dict(
            weight=self.filter_kernel.repeat(
                input.size(1), *[1] * (self.filter_kernel.dim() - 1)),
            stride=self.stride,
            groups=input.size(1),
        )
        if self.fused_pad:
            conv_kwargs.update(padding=self.padding)
        else:
            x = F.pad(x, self.padding, mode=self.pad_mode, value=self.pad_constant)
        return _apply_conv(
            input=x,
            transpose=False,
            **conv_kwargs
        )

    def extra_repr(self):
        return 'filter_size={}, stride={}'.format(
            tuple(self.filter_kernel.size()[2:]), self.stride)


class Upsample(nn.Module):
    """
    Performs upsampling without learnable parameters that doubles
    the size of data.
    Arguments:
        mode (str): 'FIR' or one of the valid modes
            that can be passed to torch.nn.functional.interpolate().
        filter (int, list, tensor): Filter to use if `mode='FIR'`.
            Default value is a lowpass filter of values [1, 3, 3, 1].
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        gain (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        dim (int): Dims of data (excluding batch and channel dimensions).
            Default value is 2.
    """

    def __init__(self,
                 mode='FIR',
                 filter=[1, 3, 3, 1],
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 gain=1,
                 dim=2,
                 *args,
                 **kwargs):
        super(Upsample, self).__init__()
        assert mode != 'max', 'mode \'max\' can only be used for downsampling.'
        if mode == 'FIR':
            if filter is None:
                filter = [1, 1]
            filter_kernel = _setup_filter_kernel(
                filter_kernel=filter,
                gain=gain,
                up_factor=2,
                dim=dim
            )
            pad = filter_kernel.size(-1) - 1
            self.filter = FilterLayer(
                filter_kernel=filter_kernel,
                pad0=(pad + 1) // 2 + 1,
                pad1=pad // 2,
                pad_mode=filter_pad_mode,
                pad_constant=filter_pad_constant
            )
            self.register_buffer('weight', torch.ones(*[1 for _ in range(dim + 2)]))
        self.mode = mode

    def forward(self, input, **kwargs):
        """
        Upsample inputs.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        if self.mode == 'FIR':
            x = _apply_conv(
                input=input,
                weight=self.weight.expand(input.size(1), *self.weight.size()[1:]),
                groups=input.size(1),
                stride=2,
                transpose=True
            )
            x = self.filter(x)
        else:
            interp_kwargs = dict(scale_factor=2, mode=self.mode)
            if 'linear' in self.mode or 'cubic' in self.mode:
                interp_kwargs.update(align_corners=False)
            x = F.interpolate(input, **interp_kwargs)
        return x

    def extra_repr(self):
        return 'resample_mode={}'.format(self.mode)


class Downsample(nn.Module):
    """
    Performs downsampling without learnable parameters that
    reduces size of data by half.
    Arguments:
        mode (str): 'FIR', 'max' or one of the valid modes
            that can be passed to torch.nn.functional.interpolate().
        filter (int, list, tensor): Filter to use if `mode='FIR'`.
            Default value is a lowpass filter of values [1, 3, 3, 1].
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        gain (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        dim (int): Dims of data (excluding batch and channel dimensions).
            Default value is 2.
    """

    def __init__(self,
                 mode='FIR',
                 filter=[1, 3, 3, 1],
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 gain=1,
                 dim=2,
                 *args,
                 **kwargs):
        super(Downsample, self).__init__()
        if mode == 'FIR':
            if filter is None:
                filter = [1, 1]
            filter_kernel = _setup_filter_kernel(
                filter_kernel=filter,
                gain=gain,
                up_factor=1,
                dim=dim
            )
            pad = filter_kernel.size(-1) - 2
            pad0 = pad // 2
            pad1 = pad - pad0
            self.filter = FilterLayer(
                filter_kernel=filter_kernel,
                stride=2,
                pad0=pad0,
                pad1=pad1,
                pad_mode=filter_pad_mode,
                pad_constant=filter_pad_constant
            )
        self.mode = mode

    def forward(self, input, **kwargs):
        """
        Downsample inputs to half its size.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        if self.mode == 'FIR':
            x = self.filter(input)
        elif self.mode == 'max':
            return getattr(F, 'max_pool{}d'.format(input.dim() - 2))(input)
        else:
            x = F.interpolate(input, scale_factor=0.5, mode=self.mode)
        return x

    def extra_repr(self):
        return 'resample_mode={}'.format(self.mode)


class MinibatchStd(nn.Module):
    """
    Adds the aveage std of each data point over a
    slice of the minibatch to that slice as a new
    feature map. This gives an output with one extra
    channel.
    Arguments:
        group_size (int): Number of entries in each slice
            of the batch. If <= 0, the entire batch is used.
            Default value is 4.
        eps (float): Epsilon value added for numerical stability.
            Default value is 1e-8.
    """
    def __init__(self, group_size=4, eps=1e-8, *args, **kwargs):
        super(MinibatchStd, self).__init__()
        if group_size is None or group_size <= 0:
            # Entire batch as group size
            group_size = 0
        assert group_size != 1, 'Can not use 1 as minibatch std group size.'
        self.group_size = group_size
        self.eps = eps

    def forward(self, input, **kwargs):
        """
        Add a new feature map to the input containing the average
        standard deviation for each slice.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        group_size = self.group_size or input.size(0)
        assert input.size(0) >= group_size, \
            'Can not use a smaller batch size ' + \
            '({}) than the specified '.format(input.size(0)) + \
            'group size ({}) '.format(group_size) + \
            'of this minibatch std layer.'
        assert input.size(0) % group_size == 0, \
            'Can not use a batch of a size ' + \
            '({}) that is not '.format(input.size(0)) + \
            'evenly divisible by the group size ({})'.format(group_size)
        x = input

        # B = batch size, C = num channels
        # *s = the size dimensions (height, width for images)

        # BC*s -> G[B/G]C*s
        y = input.view(group_size, -1, *input.size()[1:])
        # For numerical stability when training with mixed precision
        y = y.float()
        # G[B/G]C*s
        y -= y.mean(dim=0, keepdim=True)
        # [B/G]C*s
        y = torch.mean(y ** 2, dim=0)
        # [B/G]C*s
        y = torch.sqrt(y + self.eps)
        # [B/G]
        y = torch.mean(y.view(y.size(0), -1), dim=-1)
        # [B/G]1*1
        y = y.view(-1, *[1] * (input.dim() - 1))
        # Cast back to input dtype
        y = y.to(x)
        # B1*1
        y = y.repeat(group_size, *[1] * (y.dim() - 1))
        # B1*s
        y = y.expand(y.size(0), 1, *x.size()[2:])
        # B[C+1]*s
        x = torch.cat([x, y], dim=1)
        return x

    def extra_repr(self):
        return 'group_size={}'.format(self.group_size or '-1')


class DenseLayer(nn.Module):
    """
    A fully connected layer.
    NOTE: No bias is applied in this layer.
    Arguments:
        in_features (int): Number of input features.
        out_features (int): Number of output features.
        lr_mul (float): Learning rate multiplier of
            the weight. Weights are scaled by
            this value. Default value is 1.
        weight_scale (float): Scale weights for
            equalized learning rate.
            Default value is True.
        gain (float): The gain of this layer. Default value is 1.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 lr_mul=1,
                 weight_scale=True,
                 gain=1,
                 *args,
                 **kwargs):
        super(DenseLayer, self).__init__()
        weight, weight_coef = _get_weight_and_coef(
            shape=[out_features, in_features],
            lr_mul=lr_mul,
            weight_scale=weight_scale,
            gain=gain
        )
        self.register_parameter('weight', weight)
        self.weight_coef = weight_coef

    def forward(self, input, **kwargs):
        """
        Perform a matrix multiplication of the weight
        of this layer and the input.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        weight = self.weight
        if self.weight_coef != 1:
            weight = self.weight_coef * weight
        return input.matmul(weight.t())

    def extra_repr(self):
        return 'in_features={}, out_features={}'.format(
            self.weight.size(1), self.weight.size(0))


class ConvLayer(nn.Module):
    """
    A convolutional layer that can have its outputs
    modulated (style mod). It can also normalize outputs.
    These operations are done by modifying the convolutional
    kernel weight and employing grouped convolutions for
    efficiency.
    NOTE: No bias is applied in this layer.
    NOTE: Amount of padding used is the same as 'SAME'
        argument in tensorflow for conv padding.
    Arguments:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        latent_size (int, optional): The size of the
            latents to use for modulating this convolution.
            Only required when `modulate=True`.
        modulate (bool): Applies a "style" to the outputs
            of the layer. The style is given by a latent
            vector passed with the input to this layer.
            A dense layer is added that projects the
            values of the latent into scales for the
            data channels.
            Default value is False.
        demodulate (bool): Normalize std of outputs.
            Can only be set to True when `modulate=True`.
            Default value is False.
        kernel_size (int): The size of the kernel.
            Default value is 3.
        pad_mode (str): The padding mode. Default value is 'constant'.
        pad_constant (float): The constant value to pad with if
            `pad_mode='constant'`. Default value is 0.
        lr_mul (float): Learning rate multiplier of
            the weight. Weights are scaled by
            this value. Default value is 1.
        weight_scale (float): Scale weights for
            equalized learning rate.
            Default value is True.
        gain (float): The gain of this layer. Default value is 1.
        dim (int): Dims of data (excluding batch and channel dimensions).
            Default value is 2.
        eps (float): Epsilon value added for numerical stability.
            Default value is 1e-8.
    """
    def __init__(self,
                 in_channels,
                 out_channels,
                 latent_size=None,
                 modulate=False,
                 demodulate=False,
                 kernel_size=3,
                 pad_mode='constant',
                 pad_constant=0,
                 lr_mul=1,
                 weight_scale=True,
                 gain=1,
                 dim=2,
                 eps=1e-8,
                 *args,
                 **kwargs):
        super(ConvLayer, self).__init__()
        assert modulate or not demodulate, '`demodulate=True` can ' + \
            'only be used when `modulate=True`'
        if modulate:
            assert latent_size is not None, 'When using `modulate=True`, ' + \
                '`latent_size` has to be specified.'
        kernel_shape = [out_channels, in_channels] + dim * [kernel_size]
        weight, weight_coef = _get_weight_and_coef(
            shape=kernel_shape,
            lr_mul=lr_mul,
            weight_scale=weight_scale,
            gain=gain
        )
        self.register_parameter('weight', weight)
        self.weight_coef = weight_coef
        if modulate:
            self.dense = BiasActivationWrapper(
                layer=DenseLayer(
                    in_features=latent_size,
                    out_features=in_channels,
                    lr_mul=lr_mul,
                    weight_scale=weight_scale,
                    gain=1
                ),
                features=in_channels,
                use_bias=True,
                activation='linear',
                bias_init=1,
                lr_mul=lr_mul,
                weight_scale=weight_scale,
            )
        self.dense_reshape = [-1, 1, in_channels] + dim * [1]
        self.dmod_reshape = [-1, out_channels, 1] + dim * [1]
        pad = (kernel_size - 1)
        pad0 = pad - pad // 2
        pad1 = pad - pad0
        if pad0 == pad1 and (pad0 == 0 or pad_mode == 'constant' and pad_constant == 0):
            self.fused_pad = True
            self.padding = pad0
        else:
            self.fused_pad = False
            self.padding = [pad0, pad1] * dim
        self.pad_mode = pad_mode
        self.pad_constant = pad_constant
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.latent_size = latent_size
        self.modulate = modulate
        self.demodulate = demodulate
        self.kernel_size = kernel_size
        self.lr_mul = lr_mul
        self.weight_scale = weight_scale
        self.gain = gain
        self.dim = dim
        self.eps = eps

    def forward_mod(self, input, latent, weight, **kwargs):
        """
        Run the forward operation with modulation.
        Automatically called from `forward()` if modulation
        is enabled.
        """
        assert latent is not None, 'A latent vector is ' + \
            'required for the forwad pass of a modulated conv layer.'

        # B = batch size, C = num channels
        # *s = the size dimensions, example: (height, width) for images
        # *k = sizes of the convolutional kernel excluding in and out channel dimensions.
        # *1 = multiple dimensions of size 1, with number of dimensions depending on data format.
        # O = num output channels, I = num input channels

        # BI
        style_mod = self.dense(input=latent)
        # B1I*1
        style_mod = style_mod.view(*self.dense_reshape)
        # 1OI*k
        weight = weight.unsqueeze(0)
        # (1OI*k)x(B1I*1) -> BOI*k
        weight = weight * style_mod
        if self.demodulate:
            # BO
            dmod = torch.rsqrt(
                torch.sum(
                    weight.view(
                        weight.size(0),
                        weight.size(1),
                        -1
                    ) ** 2,
                    dim=-1
                ) + self.eps
            )
            # BO1*1
            dmod = dmod.view(*self.dmod_reshape)
            # (BOI*k)x(BO1*1) -> BOI*k
            weight = weight * dmod
        # BI*s -> 1[BI]*s
        x = input.view(1, -1, *input.size()[2:])
        # BOI*k -> [BO]I*k
        weight = weight.view(-1, *weight.size()[2:])
        # 1[BO]*s
        x = self._process(input=x, weight=weight, groups=input.size(0))
        # 1[BO]*s -> BO*s
        x = x.view(-1, self.out_channels, *x.size()[2:])
        return x

    def forward(self, input, latent=None, **kwargs):
        """
        Convolve the input.
        Arguments:
            input (torch.Tensor)
            latents (torch.Tensor, optional)
        Returns:
            output (torch.Tensor)
        """
        weight = self.weight
        if self.weight_coef != 1:
            weight = self.weight_coef * weight
        if self.modulate:
            return self.forward_mod(input=input, latent=latent, weight=weight)
        return self._process(input=input, weight=weight)

    def _process(self, input, weight, **kwargs):
        """
        Pad input and convolve it returning the result.
        """
        x = input
        if self.fused_pad:
            kwargs.update(padding=self.padding)
        else:
            x = F.pad(x, self.padding, mode=self.pad_mode, value=self.pad_constant)
        return _apply_conv(input=x, weight=weight, transpose=False, **kwargs)

    def extra_repr(self):
        string = 'in_channels={}, out_channels={}'.format(
            self.weight.size(1), self.weight.size(0))
        string += ', modulate={}, demodulate={}'.format(
            self.modulate, self.demodulate)
        return string


class ConvUpLayer(ConvLayer):
    """
    A convolutional upsampling layer that doubles the size of inputs.
    Extends the functionality of the `ConvLayer` class.
    Arguments:
        Same arguments as the `ConvLayer` class.
    Class Specific Keyword Arguments:
        fused (bool): Fuse the upsampling operation with the
            convolution, turning this layer into a strided transposed
            convolution. Default value is True.
        mode (str): Resample mode, can only be 'FIR' or 'none' if the operation
            is fused, otherwise it can also be one of the valid modes
            that can be passed to torch.nn.functional.interpolate().
        filter (int, list, tensor): Filter to use if `mode='FIR'`.
            Default value is a lowpass filter of values [1, 3, 3, 1].
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        pad_once (bool): If FIR filter is used, do all the padding for
            both convolution and FIR in the FIR layer instead of once per layer.
            Default value is True.
    """

    def __init__(self,
                 *args,
                 fused=True,
                 mode='FIR',
                 filter=[1, 3, 3, 1],
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 pad_once=True,
                 **kwargs):
        super(ConvUpLayer, self).__init__(*args, **kwargs)
        if fused:
            assert mode in ['FIR', 'none'], \
                'Fused conv upsample can only use ' + \
                '\'FIR\' or \'none\' for resampling ' + \
                '(`mode` argument).'
            self.padding = np.ceil(self.kernel_size / 2 - 1)
            self.output_padding = 2 * (self.padding + 1) - self.kernel_size
            if not self.modulate:
                # pre-prepare weights only once instead of every forward pass
                self.weight = nn.Parameter(self.weight.data.transpose(0, 1).contiguous())
            self.filter = None
            if mode == 'FIR':
                filter_kernel = _setup_filter_kernel(
                    filter_kernel=filter,
                    gain=self.gain,
                    up_factor=2,
                    dim=self.dim
                )
                if pad_once:
                    self.padding = 0
                    self.output_padding = 0
                    pad = (filter_kernel.size(-1) - 2) - (self.kernel_size - 1)
                    pad0 = (pad + 1) // 2 + 1,
                    pad1 = pad // 2 + 1,
                else:
                    pad = (filter_kernel.size(-1) - 1)
                    pad0 = pad // 2
                    pad1 = pad - pad0
                self.filter = FilterLayer(
                    filter_kernel=filter_kernel,
                    pad0=pad0,
                    pad1=pad1,
                    pad_mode=filter_pad_mode,
                    pad_constant=filter_pad_constant
                )
        else:
            assert mode != 'none', '\'none\' can not be used as ' + \
                'sampling `mode` when `fused=False` as upsampling ' + \
                'has to be performed separately from the conv layer.'
            self.upsample = Upsample(
                mode=mode,
                filter=filter,
                filter_pad_mode=filter_pad_mode,
                filter_pad_constant=filter_pad_constant,
                channels=self.in_channels,
                gain=self.gain,
                dim=self.dim
            )
        self.fused = fused
        self.mode = mode

    def _process(self, input, weight, **kwargs):
        """
        Apply resampling (if enabled) and convolution.
        """
        x = input
        if self.fused:
            if self.modulate:
                weight = _setup_mod_weight_for_t_conv(
                    weight=weight,
                    in_channels=self.in_channels,
                    out_channels=self.out_channels
                )
            pad_out = False
            if self.pad_mode == 'constant' and self.pad_constant == 0:
                if self.filter is not None or not self.pad_once:
                    kwargs.update(
                        padding=self.padding,
                        output_padding=self.output_padding,
                    )
            elif self.filter is None:
                if self.padding:
                    x = F.pad(
                        x,
                        [self.padding] * 2 * self.dim,
                        mode=self.pad_mode,
                        value=self.pad_constant
                    )
                pad_out = self.output_padding != 0
            kwargs.update(stride=2)
            x = _apply_conv(
                input=x,
                weight=weight,
                transpose=True,
                **kwargs
            )
            if pad_out:
                x = F.pad(
                    x,
                    [self.output_padding, 0] * self.dim,
                    mode=self.pad_mode,
                    value=self.pad_constant
                )
            if self.filter is not None:
                x = self.filter(x)
        else:
            x = super(ConvUpLayer, self)._process(
                input=self.upsample(input=x),
                weight=weight,
                **kwargs
            )
        return x

    def extra_repr(self):
        string = super(ConvUpLayer, self).extra_repr()
        string += ', fused={}, resample_mode={}'.format(
            self.fused, self.mode)
        return string


class ConvDownLayer(ConvLayer):
    """
    A convolutional downsampling layer that halves the size of inputs.
    Extends the functionality of the `ConvLayer` class.
    Arguments:
        Same arguments as the `ConvLayer` class.
    Class Specific Keyword Arguments:
        fused (bool): Fuse the downsampling operation with the
            convolution, turning this layer into a strided convolution.
            Default value is True.
        mode (str): Resample mode, can only be 'FIR' or 'none' if the operation
            is fused, otherwise it can also be 'max' or one of the valid modes
            that can be passed to torch.nn.functional.interpolate().
        filter (int, list, tensor): Filter to use if `mode='FIR'`.
            Default value is a lowpass filter of values [1, 3, 3, 1].
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            See `FilterLayer` docstring for more info.
        pad_once (bool): If FIR filter is used, do all the padding for
            both convolution and FIR in the FIR layer instead of once per layer.
            Default value is True.
    """

    def __init__(self,
                 *args,
                 fused=True,
                 mode='FIR',
                 filter=[1, 3, 3, 1],
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 pad_once=True,
                 **kwargs):
        super(ConvDownLayer, self).__init__(*args, **kwargs)
        if fused:
            assert mode in ['FIR', 'none'], \
                'Fused conv downsample can only use ' + \
                '\'FIR\' or \'none\' for resampling ' + \
                '(`mode` argument).'
            pad = self.kernel_size - 2
            pad0 = pad // 2
            pad1 = pad - pad0
            if pad0 == pad1 and (pad0 == 0 or self.pad_mode == 'constant' and self.pad_constant == 0):
                self.fused_pad = True
                self.padding = pad0
            else:
                self.fused_pad = False
                self.padding = [pad0, pad1] * self.dim
            self.filter = None
            if mode == 'FIR':
                filter_kernel = _setup_filter_kernel(
                    filter_kernel=filter,
                    gain=self.gain,
                    up_factor=1,
                    dim=self.dim
                )
                if pad_once:
                    self.fused_pad = True
                    self.padding = 0
                    pad = (filter_kernel.size(-1) - 2) + (self.kernel_size - 1)
                    pad0 = (pad + 1) // 2,
                    pad1 = pad // 2,
                else:
                    pad = (filter_kernel.size(-1) - 1)
                    pad0 = pad // 2
                    pad1 = pad - pad0
                self.filter = FilterLayer(
                    filter_kernel=filter_kernel,
                    pad0=pad0,
                    pad1=pad1,
                    pad_mode=filter_pad_mode,
                    pad_constant=filter_pad_constant
                )
                self.pad_once = pad_once
        else:
            assert mode != 'none', '\'none\' can not be used as ' + \
                'sampling `mode` when `fused=False` as downsampling ' + \
                'has to be performed separately from the conv layer.'
            self.downsample = Downsample(
                mode=mode,
                filter=filter,
                pad_mode=filter_pad_mode,
                pad_constant=filter_pad_constant,
                channels=self.in_channels,
                gain=self.gain,
                dim=self.dim
            )
        self.fused = fused
        self.mode = mode

    def _process(self, input, weight, **kwargs):
        """
        Apply resampling (if enabled) and convolution.
        """
        x = input
        if self.fused:
            kwargs.update(stride=2)
            if self.filter is not None:
                x = self.filter(input=x)
        else:
            x = self.downsample(input=x)
        x = super(ConvDownLayer, self)._process(
            input=x,
            weight=weight,
            **kwargs
        )
        return x

    def extra_repr(self):
        string = super(ConvDownLayer, self).extra_repr()
        string += ', fused={}, resample_mode={}'.format(
            self.fused, self.mode)
        return string


class GeneratorConvBlock(nn.Module):
    """
    A convblock for the synthesiser model.
    Arguments:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        latent_size (int): The size of the latent vectors.
        demodulate (bool): Normalize feature outputs from conv
            layers. Default value is True.
        resnet (bool): Use residual connections. Default value is
            False.
        up (bool): Upsample the data to twice its size. This is
            performed in the first layer of the block. Default
            value is False.
        num_layers (int): Number of convolutional layers of this
            block. Default value is 2.
        filter (int, list): The filter to use if
            `up=True` and `mode='FIR'`. If int, a low
            pass filter of this size will be used. If list,
            the filter is explicitly specified. If the filter
            is of a single dimension it will be expanded to
            the number of dimensions of the data. Default
            value is a low pass filter of [1, 3, 3, 1].
        activation (str, callable, nn.Module): The non-linear
            activation function to use.
            Default value is leaky relu with a slope of 0.2.
        mode (str): The resample mode of upsampling layers.
            Only used when `up=True`. If fused=True` only 'FIR'
            and 'none' can be used. Else, anything that can
            be passed to torch.nn.functional.interpolate is
            a valid mode. Default value is 'FIR'.
        fused (bool): If `up=True`, fuse the upsample operation
            and the first convolutional layer into a transposed
            convolutional layer.
        kernel_size (int): Size of the convolutional kernel.
            Default value is 3.
        pad_mode (str): The padding mode for convolutional
            layers. Has to be one of 'constant', 'reflect',
            'replicate' or 'circular'. Default value is
            'constant'.
        pad_constant (float): The value to use for conv
            padding if `conv_pad_mode='constant'`. Default
            value is 0.
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            Otherwise works the same as `pad_mode`.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            Otherwise works the same as `pad_constant`
        pad_once (bool): If FIR filter is used, do all the padding for
            both convolution and FIR in the FIR layer instead of once per layer.
            Default value is True.
        use_bias (bool): Add bias to layer outputs. Default value is True.
        noise (bool): Add noise to the output of each layer. Default value
            is True.
        lr_mul (float): The learning rate multiplier for this
            block. When loading weights of previously trained
            networks, this value has to be the same as when
            the network was trained for the outputs to not
            change (as this is used to scale the weights).
            Default value is 1.
        weight_scale (bool): Use weight scaling for
            equalized learning rate. Default value
            is True.
        eps (float): Epsilon value added for numerical stability.
            Default value is 1e-8.
    """
    def __init__(self,
                 in_channels,
                 out_channels,
                 latent_size,
                 demodulate=True,
                 resnet=False,
                 up=False,
                 num_layers=2,
                 filter=[1, 3, 3, 1],
                 activation='leaky:0.2',
                 mode='FIR',
                 fused=True,
                 kernel_size=3,
                 pad_mode='constant',
                 pad_constant=0,
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 pad_once=True,
                 use_bias=True,
                 noise=True,
                 lr_mul=1,
                 weight_scale=True,
                 gain=1,
                 dim=2,
                 eps=1e-8,
                 *args,
                 **kwargs):
        super(GeneratorConvBlock, self).__init__()
        layer_kwargs = locals()
        layer_kwargs.pop('self')
        layer_kwargs.pop('__class__')
        layer_kwargs.update(
            features=out_channels,
            modulate=True,
        )

        assert num_layers > 0
        assert 1 <= dim <= 3, '`dim` can only be 1, 2 or 3.'
        if up:
            available_sampling = ['FIR']
            if fused:
                available_sampling.append('none')
            else:
                available_sampling.append('nearest')
                if dim == 1:
                    available_sampling.append('linear')
                elif dim == 2:
                    available_sampling.append('bilinear')
                    available_sampling.append('bicubic')
                else:
                    available_sampling.append('trilinear')
            assert mode in available_sampling, \
                '`mode` {} '.format(mode) + \
                'is not one of the available sample ' + \
                'modes {}.'.format(available_sampling)

        self.conv_block = nn.ModuleList()

        while len(self.conv_block) < num_layers:
            use_up = up and not self.conv_block
            self.conv_block.append(_get_layer(
                ConvUpLayer if use_up else ConvLayer, layer_kwargs, wrap=True, noise=noise))
            layer_kwargs.update(in_channels=out_channels)

        self.projection = None
        if resnet:
            projection_kwargs = {
                **layer_kwargs,
                'in_channels': in_channels,
                'kernel_size': 1,
                'modulate': False,
                'demodulate': False
            }
            self.projection = _get_layer(
                ConvUpLayer if up else ConvLayer, projection_kwargs, wrap=False)

        self.res_scale = 1 / np.sqrt(2)

    def __len__(self):
        """
        Get the number of conv layers in this block.
        """
        return len(self.conv_block)

    def forward(self, input, latents=None, **kwargs):
        """
        Run some input through this block and return the output.
        Arguments:
            input (torch.Tensor)
            latents (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        if latents.dim() == 2:
            latents.unsqueeze(1)
        if latents.size(1) == 1:
            latents = latents.repeat(1, len(self), 1)
        assert latents.size(1) == len(self), \
            'Number of latent inputs ' + \
            '({}) does not match '.format(latents.size(1)) + \
            'number of conv layers ' + \
            '({}) in block.'.format(len(self))
        x = input
        for i, layer in enumerate(self.conv_block):
            x = layer(input=x, latent=latents[:, i])
        if self.projection is not None:
            x += self.projection(input=input)
            x *= self.res_scale
        return x


class DiscriminatorConvBlock(nn.Module):
    """
    A convblock for the discriminator model.
    Arguments:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        demodulate (bool): Normalize feature outputs from conv
            layers. Default value is True.
        resnet (bool): Use residual connections. Default value is
            False.
        down (bool): Downsample the data to twice its size. This is
            performed in the last layer of the block. Default
            value is False.
        num_layers (int): Number of convolutional layers of this
            block. Default value is 2.
        filter (int, list): The filter to use if
            `down=True` and `mode='FIR'`. If int, a low
            pass filter of this size will be used. If list,
            the filter is explicitly specified. If the filter
            is of a single dimension it will be expanded to
            the number of dimensions of the data. Default
            value is a low pass filter of [1, 3, 3, 1].
        activation (str, callable, nn.Module): The non-linear
            activation function to use.
            Default value is leaky relu with a slope of 0.2.
        mode (str): The resample mode of downsampling layers.
            Only used when `down=True`. If fused=True` only 'FIR'
            and 'none' can be used. Else, 'max' or anything that can
            be passed to torch.nn.functional.interpolate is
            a valid mode. Default value is 'FIR'.
        fused (bool): If `down=True`, fuse the downsample operation
            and the last convolutional layer into a strided
            convolutional layer.
        kernel_size (int): Size of the convolutional kernel.
            Default value is 3.
        pad_mode (str): The padding mode for convolutional
            layers. Has to be one of 'constant', 'reflect',
            'replicate' or 'circular'. Default value is
            'constant'.
        pad_constant (float): The value to use for conv
            padding if `conv_pad_mode='constant'`. Default
            value is 0.
        filter_pad_mode (str): If `mode='FIR'`, this is used with the filter.
            Otherwise works the same as `pad_mode`.
        filter_pad_constant (float): If `mode='FIR'`, this is used with the filter.
            Otherwise works the same as `pad_constant`
        pad_once (bool): If FIR filter is used, do all the padding for
            both convolution and FIR in the FIR layer instead of once per layer.
            Default value is True.
        use_bias (bool): Add bias to layer outputs. Default value is True.
        lr_mul (float): The learning rate multiplier for this
            block. When loading weights of previously trained
            networks, this value has to be the same as when
            the network was trained for the outputs to not
            change (as this is used to scale the weights).
            Default value is 1.
        weight_scale (bool): Use weight scaling for
            equalized learning rate. Default value
            is True.
    """
    def __init__(self,
                 in_channels,
                 out_channels,
                 resnet=False,
                 down=False,
                 num_layers=2,
                 filter=[1, 3, 3, 1],
                 activation='leaky:0.2',
                 mode='FIR',
                 fused=True,
                 kernel_size=3,
                 pad_mode='constant',
                 pad_constant=0,
                 filter_pad_mode='constant',
                 filter_pad_constant=0,
                 pad_once=True,
                 use_bias=True,
                 lr_mul=1,
                 weight_scale=True,
                 gain=1,
                 dim=2,
                 *args,
                 **kwargs):
        super(DiscriminatorConvBlock, self).__init__()
        layer_kwargs = locals()
        layer_kwargs.pop('self')
        layer_kwargs.pop('__class__')
        layer_kwargs.update(
            out_channels=in_channels,
            features=in_channels,
            modulate=False,
            demodulate=False
        )

        assert num_layers > 0
        assert 1 <= dim <= 3, '`dim` can only be 1, 2 or 3.'
        if down:
            available_sampling = ['FIR']
            if fused:
                available_sampling.append('none')
            else:
                available_sampling.append('max')
                available_sampling.append('area')
                available_sampling.append('nearest')
                if dim == 1:
                    available_sampling.append('linear')
                elif dim == 2:
                    available_sampling.append('bilinear')
                    available_sampling.append('bicubic')
                else:
                    available_sampling.append('trilinear')
            assert mode in available_sampling, \
                '`mode` {} '.format(mode) + \
                'is not one of the available sample ' + \
                'modes {}'.format(available_sampling)

        self.conv_block = nn.ModuleList()

        while len(self.conv_block) < num_layers:
            if len(self.conv_block) == num_layers - 1:
                layer_kwargs.update(
                    out_channels=out_channels,
                    features=out_channels
                )
            use_down = down and len(self.conv_block) == num_layers - 1
            self.conv_block.append(_get_layer(
                ConvDownLayer if use_down else ConvLayer, layer_kwargs, wrap=True, noise=False))

        self.projection = None
        if resnet:
            projection_kwargs = {
                **layer_kwargs,
                'in_channels': in_channels,
                'kernel_size': 1,
                'modulate': False,
                'demodulate': False
            }
            self.projection = _get_layer(
                ConvDownLayer if down else ConvLayer, projection_kwargs, wrap=False)

        self.res_scale = 1 / np.sqrt(2)

    def __len__(self):
        """
        Get the number of conv layers in this block.
        """
        return len(self.conv_block)

    def forward(self, input, **kwargs):
        """
        Run some input through this block and return the output.
        Arguments:
            input (torch.Tensor)
        Returns:
            output (torch.Tensor)
        """
        x = input
        for layer in self.conv_block:
            x = layer(input=x)
        if self.projection is not None:
            x += self.projection(input=input)
            x *= self.res_scale
        return x