File size: 45,089 Bytes
480bfbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
import warnings
import functools
import os
import time
import sys
import json
import numpy as np
import torch
import torch.utils.tensorboard
from torch import nn
import torchvision
try:
    import apex
    from apex import amp
except ImportError:
    pass

from . import models, utils, loss_fns


class Trainer:
    """
    Class that handles training and logging for stylegan2.
    For distributed training, the arguments `rank`, `world_size`,
    `master_addr`, `master_port` can all be given as environmnet variables
    (only difference is that the keys should be capital cased).
    Environment variables if available will override any python
    value for the same argument.
    Arguments:
        G (Generator): The generator model.
        D (Discriminator): The discriminator model.
        latent_size (int): The size of the latent inputs.
        dataset (indexable object): The dataset. Has to implement
            '__getitem__' and '__len__'. If `label_size` > 0, this
            dataset object has to return both a data entry and its
            label when calling '__getitem__'.
        device (str, int, list, torch.device): The device to run training on.
            Can be a list of integers for parallel training in the same
            process. Parallel training can also be achieved by spawning
            seperate processes and using the `rank` argument for each
            process. In that case, only one device should be specified
            per process.
        Gs (Generator, optional): A generator copy with the current
            moving average of the training generator. If not specified,
            a copy of the generator is made for the moving average of
            weights.
        Gs_beta (float): The beta value for the moving average weights.
            Default value is 1 / (2 ^(32 / 10000)).
        Gs_device (str, int, torch.device, optional): The device to store
            the moving average weights on. If using a different device
            than what is specified for the `device` argument, updating
            the moving average weights will take longer as the data
            will have to be transfered over different devices. If
            this argument is not specified, the same device is used
            as specified in the `device` argument.
        batch_size (int): The total batch size to average gradients
            over. This should be the combined batch size of all used
            devices (it is later divided by world size for distributed
            training).
            Example: We want to average gradients over 32 data
                entries. To do this we just set `batch_size=32`.
                Even if we train on 8 GPUs we still use the same
                batch size (each GPU will take 4 data entries per
                batch).
            Default value is 32.
        device_batch_size (int): The number of data entries that can
            fit on the specified device at a time.
            Example: We want to average gradients over 32 data
                entries. To do this we just set `batch_size=32`.
                However, our device can only handle a batch of
                4 at a time before running out of memory. We
                therefor set `device_batch_size=4`. With a
                single device (no distributed training), each
                batch is split into 32 / 4 parts and gradients
                are averaged over all these parts.
            Default value is 4.
        label_size (int, optional): Number of possible class labels.
            This is required for conditioning the GAN with labels.
            If not specified it is assumed that no labels are used.
        data_workers (int): The number of spawned processes that
            handle data loading. Default value is 4.
        G_loss (str, callable): The loss function to use
            for the generator. If string, it can be one of the
            following: 'logistic', 'logistic_ns' or 'wgan'.
            If not a string, the callable has to follow
            the format of functions found in `stylegan2.loss`.
            Default value is 'logistic_ns' (non-saturating logistic).
        D_loss (str, callable): The loss function to use
            for the discriminator. If string, it can be one of the
            following: 'logistic' or 'wgan'.
            If not a string, same restriction follows as for `G_loss`.
            Default value is 'logistic'.
        G_reg (str, callable, None): The regularizer function to use
            for the generator. If string, it can only be 'pathreg'
            (pathlength regularization). A weight for the regularizer
            can be passed after the string name like the following:
                G_reg='pathreg:5'
            This will assign a weight of 5 to the regularization loss.
            If set to None, no geenerator regularization is performed.
            Default value is 'pathreg:2'.
        G_reg_interval (int): The interval at which to regularize the
            generator. If set to 0, the regularization and loss gradients
            are combined in a single optimization step every iteration.
            If set to 1, the gradients for the regularization and loss
            are used separately for two optimization steps. Any value
            higher than 1 indicates that regularization should only
            be performed at this interval (lazy regularization).
            Default value is 4.
        G_opt_class (str, class): The optimizer class for the generator.
            Default value is 'Adam'.
        G_opt_kwargs (dict): Keyword arguments for the generator optimizer
            constructor. Default value is {'lr': 2e-3, 'betas': (0, 0.99)}.
        G_reg_batch_size (int): Same as `batch_size` but only for
            the regularization loss of the generator. Default value
            is 16.
        G_reg_device_batch_size (int): Same as `device_batch_size`
            but only for the regularization loss of the generator.
            Default value is 2.
        D_reg (str, callable, None): The regularizer function to use
            for the discriminator. If string, the following values
            can be used: 'r1', 'r2', 'gp'. See doc for `G_reg` for
            rest of info on regularizer format.
            Default value is 'r1:10'.
        D_reg_interval (int): Same as `D_reg_interval` but for the
            discriminator. Default value is 16.
        D_opt_class (str, class): The optimizer class for the discriminator.
            Default value is 'Adam'.
        D_opt_kwargs (dict): Keyword arguments for the discriminator optimizer
            constructor. Default value is {'lr': 2e-3, 'betas': (0, 0.99)}.
        style_mix_prob (float): The probability of passing 2 latents instead of 1
            to the generator during training. Default value is 0.9.
        G_iter (int): Number of generator iterations for every full training
            iteration. Default value is 1.
        D_iter (int): Number of discriminator iterations for every full training
            iteration. Default value is 1.
        pl_avg (float, torch.Tensor): The average pathlength starting value for
            pathlength regularization of the generator. Default value is 0.
        tensorboard_log_dir (str, optional): A path to a directory to log training values
            in for tensorboard. Only used without distributed training or when
            distributed training is enabled and the rank of this trainer is 0.
        checkpoint_dir (str, optional): A path to a directory to save training
            checkpoints to. If not specified, not checkpoints are automatically
            saved during training.
        checkpoint_interval (int): The interval at which to save training checkpoints.
            Default value is 10000.
        seen (int): The number of previously trained iterations. Used for logging.
            Default value is 0.
        half (bool): Use mixed precision training. Default value is False.
        rank (int, optional): If set, use distributed training. Expects that
            this object has been constructed with the same arguments except
            for `rank` in different processes.
        world_size (int, optional): If using distributed training, this specifies
            the number of nodes in the training.
        master_addr (str): The master address for distributed training.
            Default value is '127.0.0.1'.
        master_port (str): The master port for distributed training.
            Default value is '23456'.
    """

    def __init__(self,
                 G,
                 D,
                 latent_size,
                 dataset,
                 device,
                 Gs=None,
                 Gs_beta=0.5 ** (32 / 10000),
                 Gs_device=None,
                 batch_size=32,
                 device_batch_size=4,
                 label_size=0,
                 data_workers=4,
                 G_loss='logistic_ns',
                 D_loss='logistic',
                 G_reg='pathreg:2',
                 G_reg_interval=4,
                 G_opt_class='Adam',
                 G_opt_kwargs={'lr': 2e-3, 'betas': (0, 0.99)},
                 G_reg_batch_size=None,
                 G_reg_device_batch_size=None,
                 D_reg='r1:10',
                 D_reg_interval=16,
                 D_opt_class='Adam',
                 D_opt_kwargs={'lr': 2e-3, 'betas': (0, 0.99)},
                 style_mix_prob=0.9,
                 G_iter=1,
                 D_iter=1,
                 pl_avg=0.,
                 tensorboard_log_dir=None,
                 checkpoint_dir=None,
                 checkpoint_interval=10000,
                 seen=0,
                 half=False,
                 rank=None,
                 world_size=None,
                 master_addr='127.0.0.1',
                 master_port='23456'):
        assert not isinstance(G, nn.parallel.DistributedDataParallel) and \
               not isinstance(D, nn.parallel.DistributedDataParallel), \
               'Encountered a model wrapped in `DistributedDataParallel`. ' + \
               'Distributed parallelism is handled by this class and can ' + \
               'not be initialized before.'
        # We store the training settings in a dict that can be saved as a json file.
        kwargs = locals()
        # First we remove the arguments that can not be turned into json.
        kwargs.pop('self')
        kwargs.pop('G')
        kwargs.pop('D')
        kwargs.pop('Gs')
        kwargs.pop('dataset')
        # Some arguments may have to be turned into strings to be compatible with json.
        kwargs.update(pl_avg=float(pl_avg))
        if isinstance(device, torch.device):
            kwargs.update(device=str(device))
        if isinstance(Gs_device, torch.device):
            kwargs.update(device=str(Gs_device))
        self.kwargs = kwargs

        if device or device == 0:
            if isinstance(device, (tuple, list)):
                self.device = torch.device(device[0])
            else:
                self.device = torch.device(device)
        else:
            self.device = torch.device('cpu')
        if self.device.index is not None:
            torch.cuda.set_device(self.device.index)
        else:
            assert not half, 'Mixed precision training only available ' + \
                'for CUDA devices.'
        # Set up the models
        self.G = G.train().to(self.device)
        self.D = D.train().to(self.device)
        if isinstance(device, (tuple, list)) and len(device) > 1:
            assert all(isinstance(dev, int) for dev in device), \
                'Multiple devices have to be specified as a list ' + \
                'or tuple of integers corresponding to device indices.'
            # TODO: Look into bug with torch.autograd.grad and nn.DataParallel
            # In the meanwhile just prohibit its use together.
            assert G_reg is None and D_reg is None, 'Regularization ' + \
                'currently not supported for multi-gpu training in single process. ' + \
                'Please use distributed training with one device per process instead.'

            device_batch_size *= len(device)
            def to_data_parallel(model):
                if not isinstance(model, nn.DataParallel):
                    return nn.DataParallel(model, device_ids=device)
                return model
            self.G = to_data_parallel(self.G)
            self.D = to_data_parallel(self.D)

        # Default generator reg batch size is the global batch size
        # unless it has been specified otherwise.
        G_reg_batch_size = G_reg_batch_size or batch_size
        G_reg_device_batch_size = G_reg_device_batch_size or device_batch_size

        # Set up distributed training
        rank = os.environ.get('RANK', rank)
        if rank is not None:
            rank = int(rank)
            addr = os.environ.get('MASTER_ADDR', master_addr)
            port = os.environ.get('MASTER_PORT', master_port)
            world_size = os.environ.get('WORLD_SIZE', world_size)
            assert world_size is not None, 'Distributed training ' + \
                'requires specifying world size.'
            world_size = int(world_size)
            assert self.device.index is not None, \
                'Distributed training is only supported for CUDA.'
            assert batch_size % world_size == 0, 'Batch size has to be ' + \
                'evenly divisible by world size.'
            assert G_reg_batch_size % world_size == 0, 'G reg batch size has to be ' + \
                'evenly divisible by world size.'
            batch_size = batch_size // world_size
            G_reg_batch_size = G_reg_batch_size // world_size
            init_method = 'tcp://{}:{}'.format(addr, port)
            torch.distributed.init_process_group(
                backend='nccl', init_method=init_method, rank=rank, world_size=world_size)
        else:
            world_size = 1
        self.rank = rank
        self.world_size = world_size

        # Set up variable to keep track of moving average of path lengths
        self.pl_avg = torch.tensor(
            pl_avg, dtype=torch.float16 if half else torch.float32, device=self.device)

        # Broadcast parameters from rank 0 if running distributed
        self._sync_distributed(G=self.G, D=self.D, broadcast_weights=True)

        # Set up moving average of generator
        # Only for non-distributed training or
        # if rank is 0
        if not self.rank:
            # Values for `rank`: None -> not distributed, 0 -> distributed and 'main' node
            self.Gs = Gs
            if not isinstance(Gs, utils.MovingAverageModule):
                self.Gs = utils.MovingAverageModule(
                    from_module=self.G,
                    to_module=Gs,
                    param_beta=Gs_beta,
                    device=self.device if Gs_device is None else Gs_device
                )
        else:
            self.Gs = None

        # Set up loss and regularization functions
        self.G_loss = get_loss_fn('G', G_loss)
        self.D_loss = get_loss_fn('D', D_loss)
        self.G_reg = get_reg_fn('G', G_reg, pl_avg=self.pl_avg)
        self.D_reg = get_reg_fn('D', D_reg)
        self.G_reg_interval = G_reg_interval
        self.D_reg_interval = D_reg_interval
        self.G_iter = G_iter
        self.D_iter = D_iter

        # Set up optimizers (adjust hyperparameters if lazy regularization is active)
        self.G_opt = build_opt(self.G, G_opt_class, G_opt_kwargs, self.G_reg, self.G_reg_interval)
        self.D_opt = build_opt(self.D, D_opt_class, D_opt_kwargs, self.D_reg, self.D_reg_interval)

        # Set up mixed precision training
        if half:
            assert 'apex' in sys.modules, 'Can not run mixed precision ' + \
                'training (`half=True`) without the apex module.'
            (self.G, self.D), (self.G_opt, self.D_opt) = amp.initialize(
                [self.G, self.D], [self.G_opt, self.D_opt], opt_level='O1')
        self.half = half

        # Data
        sampler = None
        if self.rank is not None:
            sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
        self.dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=device_batch_size,
            num_workers=data_workers,
            shuffle=sampler is None,
            pin_memory=self.device.index is not None,
            drop_last=True,
            sampler=sampler
        )
        self.dataloader_iter = None
        self.prior_generator = utils.PriorGenerator(
            latent_size=latent_size,
            label_size=label_size,
            batch_size=device_batch_size,
            device=self.device
        )
        assert batch_size % device_batch_size == 0, \
            'Batch size has to be evenly divisible by the product of ' + \
            'device batch size and world size.'
        self.subdivisions = batch_size // device_batch_size
        assert G_reg_batch_size % G_reg_device_batch_size == 0, \
            'G reg batch size has to be evenly divisible by the product of ' + \
            'G reg device batch size and world size.'
        self.G_reg_subdivisions = G_reg_batch_size // G_reg_device_batch_size
        self.G_reg_device_batch_size = G_reg_device_batch_size

        self.tb_writer = None
        if tensorboard_log_dir and not self.rank:
            self.tb_writer = torch.utils.tensorboard.SummaryWriter(tensorboard_log_dir)

        self.label_size = label_size
        self.style_mix_prob = style_mix_prob
        self.checkpoint_dir = checkpoint_dir
        self.checkpoint_interval = checkpoint_interval
        self.seen = seen
        self.metrics = {}
        self.callbacks = []

    def _get_batch(self):
        """
        Fetch a batch and its labels. If no labels are
        available the returned labels will be `None`.
        Returns:
            data
            labels
        """
        if self.dataloader_iter is None:
            self.dataloader_iter = iter(self.dataloader)
        try:
            batch = next(self.dataloader_iter)
        except StopIteration:
            self.dataloader_iter = None
            return self._get_batch()
        if isinstance(batch, (tuple, list)):
            if len(batch) > 1:
                data, label = batch[:2]
            else:
                data, label = batch[0], None
        else:
            data, label = batch, None
        if not self.label_size:
            label = None
        if torch.is_tensor(data):
            data = data.to(self.device)
        if torch.is_tensor(label):
            label = label.to(self.device)
        return data, label

    def _sync_distributed(self, G=None, D=None, broadcast_weights=False):
        """
        Sync the gradients (and alternatively the weights) of
        the specified networks over the distributed training
        nodes. Varying buffers are broadcasted from rank 0.
        If no distributed training is not enabled, no action
        is taken and this is a no-op function.
        Arguments:
            G (Generator, optional)
            D (Discriminator, optional)
            broadcast_weights (bool): Broadcast the weights from
                node of rank 0 to all other ranks. Default
                value is False.
        """
        if self.rank is None:
            return
        for net in [G, D]:
            if net is None:
                continue
            for p in net.parameters():
                if p.grad is not None:
                    torch.distributed.all_reduce(p.grad, async_op=True)
                if broadcast_weights:
                    torch.distributed.broadcast(p.data, src=0, async_op=True)
        if G is not None:
            if G.dlatent_avg is not None:
                torch.distributed.broadcast(G.dlatent_avg, src=0, async_op=True)
            if self.pl_avg is not None:
                torch.distributed.broadcast(self.pl_avg, src=0, async_op=True)
        if G is not None or D is not None:
            torch.distributed.barrier(async_op=False)

    def _backward(self, loss, opt, mul=1, subdivisions=None):
        """
        Reduce loss by world size and subdivisions before
        calling backward for the loss. Loss scaling is
        performed when mixed precision training is
        enabled.
        Arguments:
            loss (torch.Tensor)
            opt (torch.optim.Optimizer)
            mul (float): Loss weight. Default value is 1.
            subdivisions (int, optional): The number of
                subdivisions to divide by. If this is
                not specified, the subdvisions from
                the specified batch and device size
                at construction is used.
        Returns:
            loss (torch.Tensor): The loss scaled by mul
                and subdivisions but not by world size.
        """
        if loss is None:
            return 0
        mul /= subdivisions or self.subdivisions
        mul /= self.world_size or 1
        if mul != 1:
            loss *= mul
        if self.half:
            with amp.scale_loss(loss, opt) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        #get the scalar only
        return loss.item() * (self.world_size or 1)

    def train(self, iterations, callbacks=None, verbose=True):
        """
        Train the models for a specific number of iterations.
        Arguments:
            iterations (int): Number of iterations to train for.
            callbacks (callable, list, optional): One
                or more callbacks to call at the end of each
                iteration. The function is given the total
                number of batches that have been processed since
                this trainer object was initialized (not reset
                when loading a saved checkpoint).
                Default value is None (unused).
            verbose (bool): Write progress to stdout.
                Default value is True.
        """
        evaluated_metrics = {}
        if self.rank:
            verbose=False
        if verbose:
            progress = utils.ProgressWriter(iterations)
            value_tracker = utils.ValueTracker()
        for _ in range(iterations):
            # Figure out if G and/or D be
            # regularized this iteration
            G_reg = self.G_reg is not None
            if self.G_reg_interval and G_reg:
                G_reg = self.seen % self.G_reg_interval == 0
            D_reg = self.D_reg is not None
            if self.D_reg_interval and D_reg:
                D_reg = self.seen % self.D_reg_interval == 0

            # -----| Train G |----- #

            # Disable gradients for D while training G
            self.D.requires_grad_(False)

            for _ in range(self.G_iter):
                self.G_opt.zero_grad()

                G_loss = 0
                for i in range(self.subdivisions):
                    latents, latent_labels = self.prior_generator(
                        multi_latent_prob=self.style_mix_prob)
                    loss, _ = self.G_loss(
                        G=self.G,
                        D=self.D,
                        latents=latents,
                        latent_labels=latent_labels
                    )
                    G_loss += self._backward(loss, self.G_opt)

                if G_reg:
                    if self.G_reg_interval:
                        # For lazy regularization, even if the interval
                        # is set to 1, the optimization step is taken
                        # before the gradients of the regularization is gathered.
                        self._sync_distributed(G=self.G)
                        self.G_opt.step()
                        self.G_opt.zero_grad()
                    G_reg_loss = 0
                    # Pathreg is expensive to compute which
                    # is why G regularization has its own settings
                    # for subdivisions and batch size.
                    for i in range(self.G_reg_subdivisions):
                        latents, latent_labels = self.prior_generator(
                            batch_size=self.G_reg_device_batch_size,
                            multi_latent_prob=self.style_mix_prob
                        )
                        _, reg_loss = self.G_reg(
                            G=self.G,
                            latents=latents,
                            latent_labels=latent_labels
                        )
                        G_reg_loss += self._backward(
                            reg_loss,
                            self.G_opt, mul=self.G_reg_interval or 1,
                            subdivisions=self.G_reg_subdivisions
                        )
                self._sync_distributed(G=self.G)
                self.G_opt.step()
                # Update moving average of weights after
                # each G training subiteration
                if self.Gs is not None:
                    self.Gs.update()

            # Re-enable gradients for D
            self.D.requires_grad_(True)

            # -----| Train D |----- #

            # Disable gradients for G while training D
            self.G.requires_grad_(False)

            for _ in range(self.D_iter):
                self.D_opt.zero_grad()

                D_loss = 0
                for i in range(self.subdivisions):
                    latents, latent_labels = self.prior_generator(
                        multi_latent_prob=self.style_mix_prob)
                    reals, real_labels = self._get_batch()
                    loss, _ = self.D_loss(
                        G=self.G,
                        D=self.D,
                        latents=latents,
                        latent_labels=latent_labels,
                        reals=reals,
                        real_labels=real_labels
                    )
                    D_loss += self._backward(loss, self.D_opt)

                if D_reg:
                    if self.D_reg_interval:
                        # For lazy regularization, even if the interval
                        # is set to 1, the optimization step is taken
                        # before the gradients of the regularization is gathered.
                        self._sync_distributed(D=self.D)
                        self.D_opt.step()
                        self.D_opt.zero_grad()
                    D_reg_loss = 0
                    for i in range(self.subdivisions):
                        latents, latent_labels = self.prior_generator(
                            multi_latent_prob=self.style_mix_prob)
                        reals, real_labels = self._get_batch()
                        _, reg_loss = self.D_reg(
                            G=self.G,
                            D=self.D,
                            latents=latents,
                            latent_labels=latent_labels,
                            reals=reals,
                            real_labels=real_labels
                        )
                        D_reg_loss += self._backward(
                            reg_loss, self.D_opt, mul=self.D_reg_interval or 1)
                self._sync_distributed(D=self.D)
                self.D_opt.step()

            # Re-enable grads for G
            self.G.requires_grad_(True)

            if self.tb_writer is not None or verbose:
                # In case verbose is true and tensorboard logging enabled
                # we calculate grad norm here to only do it once as well
                # as making sure we do it before any metrics that may
                # possibly zero the grads.
                G_grad_norm = utils.get_grad_norm_from_optimizer(self.G_opt)
                D_grad_norm = utils.get_grad_norm_from_optimizer(self.D_opt)

            for name, metric in self.metrics.items():
                if not metric['interval'] or self.seen % metric['interval'] == 0:
                    evaluated_metrics[name] = metric['eval_fn']()

            # Printing and logging

            # Tensorboard logging
            if self.tb_writer is not None:
                self.tb_writer.add_scalar('Loss/G_loss', G_loss, self.seen)
                if G_reg:
                    self.tb_writer.add_scalar('Loss/G_reg', G_reg_loss, self.seen)
                    self.tb_writer.add_scalar('Grad_norm/G_reg', G_grad_norm, self.seen)
                    self.tb_writer.add_scalar('Params/pl_avg', self.pl_avg, self.seen)
                else:
                    self.tb_writer.add_scalar('Grad_norm/G_loss', G_grad_norm, self.seen)
                self.tb_writer.add_scalar('Loss/D_loss', D_loss, self.seen)
                if D_reg:
                    self.tb_writer.add_scalar('Loss/D_reg', D_reg_loss, self.seen)
                    self.tb_writer.add_scalar('Grad_norm/D_reg', D_grad_norm, self.seen)
                else:
                    self.tb_writer.add_scalar('Grad_norm/D_loss', D_grad_norm, self.seen)
                for name, value in evaluated_metrics.items():
                    self.tb_writer.add_scalar('Metrics/{}'.format(name), value, self.seen)

            # Printing
            if verbose:
                value_tracker.add('seen', self.seen + 1, beta=0)
                value_tracker.add('G_lr', self.G_opt.param_groups[0]['lr'], beta=0)
                value_tracker.add('G_loss', G_loss)
                if G_reg:
                    value_tracker.add('G_reg', G_reg_loss)
                    value_tracker.add('G_reg_grad_norm', G_grad_norm)
                    value_tracker.add('pl_avg', self.pl_avg, beta=0)
                else:
                    value_tracker.add('G_loss_grad_norm', G_grad_norm)
                value_tracker.add('D_lr', self.D_opt.param_groups[0]['lr'], beta=0)
                value_tracker.add('D_loss', D_loss)
                if D_reg:
                    value_tracker.add('D_reg', D_reg_loss)
                    value_tracker.add('D_reg_grad_norm', D_grad_norm)
                else:
                    value_tracker.add('D_loss_grad_norm', D_grad_norm)
                for name, value in evaluated_metrics.items():
                    value_tracker.add(name, value, beta=0)
                progress.write(str(value_tracker))

            # Callback
            for callback in utils.to_list(callbacks) + self.callbacks:
                callback(self.seen)

            self.seen += 1
            
            # clear cache
            torch.cuda.empty_cache()
            # Handle checkpointing
            if not self.rank and self.checkpoint_dir and self.checkpoint_interval:
                if self.seen % self.checkpoint_interval == 0:
                    checkpoint_path = os.path.join(
                        self.checkpoint_dir,
                        '{}_{}'.format(self.seen, time.strftime('%Y-%m-%d_%H-%M-%S'))
                    )
                    self.save_checkpoint(checkpoint_path)

        if verbose:
            progress.close()

    def register_metric(self, name, eval_fn, interval):
        """
        Add a metric. This will be evaluated every `interval`
        training iteration. Used by tensorboard and progress
        updates written to stdout while training.
        Arguments:
            name (str): A name for the metric. If a metric with
                this name already exists it will be overwritten.
            eval_fn (callable): A function that evaluates the metric
                and returns a python number.
            interval (int): The interval to evaluate at.
        """
        self.metrics[name] = {'eval_fn': eval_fn, 'interval': interval}

    def remove_metric(self, name):
        """
        Remove a metric that was previously registered.
        Arguments:
            name (str): Name of the metric.
        """
        if name in self.metrics:
            del self.metrics[name]
        else:
            warnings.warn(
                'Attempting to remove metric {} '.format(name) + \
                'which does not exist.'
            )

    def generate_images(self,
                        num_images,
                        seed=None,
                        truncation_psi=None,
                        truncation_cutoff=None,
                        label=None,
                        pixel_min=-1,
                        pixel_max=1):
        """
        Generate some images with the generator and transform them into PIL
        images and return them as a list.
        Arguments:
            num_images (int): Number of images to generate.
            seed (int, optional): The seed for the random generation
                of input latent values.
            truncation_psi (float): See stylegan2.model.Generator.set_truncation()
                Default value is None.
            truncation_cutoff (int): See stylegan2.model.Generator.set_truncation()
            label (int, list, optional): Label to condition all generated images with
                or multiple labels, one for each generated image.
            pixel_min (float): The min value in the pixel range of the generator.
                Default value is -1.
            pixel_min (float): The max value in the pixel range of the generator.
                Default value is 1.
        Returns:
            images (list): List of PIL images.
        """
        if seed is None:
            seed = int(10000 * time.time())
        latents, latent_labels = self.prior_generator(num_images, seed=seed)
        if label:
            assert latent_labels is not None, 'Can not specify label when no labels ' + \
                'are used by this model.'
            label = utils.to_list(label)
            assert all(isinstance(l, int) for l in label), '`label` can only consist of ' + \
                'one or more python integers.'
            assert len(label) == 1 or len(label) == num_images, '`label` can either ' + \
                'specify one label to use for all images or a list of labels of the ' + \
                'same length as number of images. Received {} labels '.format(len(label)) + \
                'but {} images are to be generated.'.format(num_images)
            if len(label) == 1:
                latent_labels.fill_(label[0])
            else:
                latent_labels = torch.tensor(label).to(latent_labels)
        self.Gs.set_truncation(
            truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
        with torch.no_grad():
            generated = self.Gs(latents=latents, labels=latent_labels)
        assert generated.dim() - 2 == 2, 'Can only generate images when using a ' + \
            'network built for 2-dimensional data.'
        assert generated.dim() == 4, 'Only generators that produce 2d data ' + \
            'can be used to generate images.'
        return utils.tensor_to_PIL(generated, pixel_min=pixel_min, pixel_max=pixel_max)

    def log_images_tensorboard(self, images, name, resize=256):
        """
        Log a list of images to tensorboard by first turning
        them into a grid. Can not be performed if rank > 0
        or tensorboard_log_dir was not given at construction.
        Arguments:
            images (list): List of PIL images.
            name (str): The name to log images for.
            resize (int, tuple): The height and width to use for
                each image in the grid. Default value is 256.
        """
        assert self.tb_writer is not None, \
            'No tensorboard log dir was specified ' + \
            'when constructing this object.'
        image = utils.stack_images_PIL(images, individual_img_size=resize)
        image = torchvision.transforms.ToTensor()(image)
        self.tb_writer.add_image(name, image, self.seen)

    def add_tensorboard_image_logging(self,
                                      name,
                                      interval,
                                      num_images,
                                      resize=256,
                                      seed=None,
                                      truncation_psi=None,
                                      truncation_cutoff=None,
                                      label=None,
                                      pixel_min=-1,
                                      pixel_max=1):
        """
        Set up tensorboard logging of generated images to be performed
        at a certain training interval. If distributed training is set up
        and this object does not have the rank 0, no logging will be performed
        by this object.
        All arguments except the ones mentioned below have their description
        in the docstring of `generate_images()` and `log_images_tensorboard()`.
        Arguments:
            interval (int): The interval at which to log generated images.
        """
        if self.rank:
            return
        def callback(seen):
            if seen % interval == 0:
                images = self.generate_images(
                    num_images=num_images,
                    seed=seed,
                    truncation_psi=truncation_psi,
                    truncation_cutoff=truncation_cutoff,
                    label=label,
                    pixel_min=pixel_min,
                    pixel_max=pixel_max
                )
                self.log_images_tensorboard(
                    images=images,
                    name=name,
                    resize=resize
                )
        self.callbacks.append(callback)

    def save_checkpoint(self, dir_path):
        """
        Save the current state of this trainer as a checkpoint.
        NOTE: The dataset can not be serialized and saved so this
            has to be reconstructed and given when loading this checkpoint.
        Arguments:
            dir_path (str): The checkpoint path.
        """
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)
        else:
            assert os.path.isdir(dir_path), '`dir_path` points to a file.'
        kwargs = self.kwargs.copy()
        # Update arguments that may have changed since construction
        kwargs.update(
            seen=self.seen,
            pl_avg=float(self.pl_avg)
        )
        with open(os.path.join(dir_path, 'kwargs.json'), 'w') as fp:
            json.dump(kwargs, fp)
        torch.save(self.G_opt.state_dict(), os.path.join(dir_path, 'G_opt.pth'))
        torch.save(self.D_opt.state_dict(), os.path.join(dir_path, 'D_opt.pth'))
        models.save(self.G, os.path.join(dir_path, 'G.pth'))
        models.save(self.D, os.path.join(dir_path, 'D.pth'))
        if self.Gs is not None:
            models.save(self.Gs, os.path.join(dir_path, 'Gs.pth'))

    @classmethod
    def load_checkpoint(cls, checkpoint_path, dataset, **kwargs):
        """
        Load a checkpoint into a new Trainer object and return that
        object. If the path specified points at a folder containing
        multiple checkpoints, the latest one will be used.
        The dataset can not be serialized and saved so it is required
        to be explicitly given when loading a checkpoint.
        Arguments:
            checkpoint_path (str): Path to a checkpoint or to a folder
                containing one or more checkpoints.
            dataset (indexable): The dataset to use.
            **kwargs (keyword arguments): Any other arguments to override
                the ones saved in the checkpoint. Useful for when training
                is continued on a different device or when distributed training
                is changed.
        """
        checkpoint_path = _find_checkpoint(checkpoint_path)
        _is_checkpoint(checkpoint_path, enforce=True)
        with open(os.path.join(checkpoint_path, 'kwargs.json'), 'r') as fp:
            loaded_kwargs = json.load(fp)
        loaded_kwargs.update(**kwargs)
        device = torch.device('cpu')
        if isinstance(loaded_kwargs['device'], (list, tuple)):
            device = torch.device(loaded_kwargs['device'][0])
        for name in ['G', 'D']:
            fpath = os.path.join(checkpoint_path, name + '.pth')
            loaded_kwargs[name] = models.load(fpath, map_location=device)
        if os.path.exists(os.path.join(checkpoint_path, 'Gs.pth')):
            loaded_kwargs['Gs'] = models.load(
                os.path.join(checkpoint_path, 'Gs.pth'),
                map_location=device if loaded_kwargs['Gs_device'] is None \
                    else torch.device(loaded_kwargs['Gs_device'])
            )
        obj = cls(dataset=dataset, **loaded_kwargs)
        for name in ['G_opt', 'D_opt']:
            fpath = os.path.join(checkpoint_path, name + '.pth')
            state_dict = torch.load(fpath, map_location=device)
            getattr(obj, name).load_state_dict(state_dict)
        return obj


#----------------------------------------------------------------------------
# Checkpoint helper functions


def _is_checkpoint(dir_path, enforce=False):
    if not dir_path:
        if enforce:
            raise ValueError('Not a checkpoint.')
        return False
    if not os.path.exists(dir_path):
        if enforce:
            raise FileNotFoundError('{} could not be found.'.format(dir_path))
        return False
    if not os.path.isdir(dir_path):
        if enforce:
            raise NotADirectoryError('{} is not a directory.'.format(dir_path))
        return False
    fnames = os.listdir(dir_path)
    for fname in ['G.pth', 'D.pth', 'G_opt.pth', 'D_opt.pth', 'kwargs.json']:
        if fname not in fnames:
            if enforce:
                raise FileNotFoundError(
                    'Could not find {} in {}.'.format(fname, dir_path))
            return False
    return True


def _find_checkpoint(dir_path):
    if not dir_path:
        return None
    if not os.path.exists(dir_path) or not os.path.isdir(dir_path):
        return None
    if _is_checkpoint(dir_path):
        return dir_path
    checkpoint_names = []
    for name in os.listdir(dir_path):
        if _is_checkpoint(os.path.join(dir_path, name)):
            checkpoint_names.append(name)
    if not checkpoint_names:
        return None
    def get_iteration(name):
        return int(name.split('_')[0])
    def get_timestamp(name):
        return '_'.join(name.split('_')[1:])
    # Python sort is stable, meaning that this sort operation
    # will guarantee that the order of values after the first
    # sort will stay for a set of values that have the same
    # key value.
    checkpoint_names = sorted(
        sorted(checkpoint_names, key=get_iteration), key=get_timestamp)
    return os.path.join(dir_path, checkpoint_names[-1])


#----------------------------------------------------------------------------
# Reg and loss function fetchers


def build_opt(net, opt_class, opt_kwargs, reg, reg_interval):
    opt_kwargs['lr'] = opt_kwargs.get('lr', 1e-3)
    if reg not in [None, False] and reg_interval:
        mb_ratio = reg_interval / (reg_interval + 1.)
        opt_kwargs['lr'] *= mb_ratio
        if 'momentum' in opt_kwargs:
            opt_kwargs['momentum'] = opt_kwargs['momentum'] ** mb_ratio
        if 'betas' in opt_kwargs:
            betas = opt_kwargs['betas']
            opt_kwargs['betas'] = (betas[0] ** mb_ratio, betas[1] ** mb_ratio)
    if isinstance(opt_class, str):
        opt_class = getattr(torch.optim, opt_class.title())
    return opt_class(net.parameters(), **opt_kwargs)


#----------------------------------------------------------------------------
# Reg and loss function fetchers


_LOSS_FNS = {
    'G': {
        'logistic': loss_fns.G_logistic,
        'logistic_ns': loss_fns.G_logistic_ns,
        'wgan': loss_fns.G_wgan
    },
    'D': {
        'logistic': loss_fns.D_logistic,
        'wgan': loss_fns.D_wgan
    }
}
def get_loss_fn(net, loss):
    if callable(loss):
        return loss
    net = net.upper()
    assert net in ['G', 'D'], 'Unknown net type {}'.format(net)
    loss = loss.lower()
    for name in _LOSS_FNS[net].keys():
        if loss == name:
            return _LOSS_FNS[net][name]
    raise ValueError('Unknow {} loss {}'.format(net, loss))


_REG_FNS = {
    'G': {
        'pathreg': loss_fns.G_pathreg
    },
    'D': {
        'r1': loss_fns.D_r1,
        'r2': loss_fns.D_r2,
        'gp': loss_fns.D_gp,
    }
}
def get_reg_fn(net, reg, **kwargs):
    if reg is None:
        return None
    if callable(reg):
        functools.partial(reg, **kwargs)
    net = net.upper()
    assert net in ['G', 'D'], 'Unknown net type {}'.format(net)
    reg = reg.lower()
    gamma = None
    for name in _REG_FNS[net].keys():
        if reg.startswith(name):
            gamma_chars = [c for c in reg.replace(name, '') if c.isdigit() or c == '.']
            if gamma_chars:
                kwargs.update(gamma=float(''.join(gamma_chars)))
            return functools.partial(_REG_FNS[net][name], **kwargs)
    raise ValueError('Unknow regularizer {}'.format(reg))