Spaces:
Runtime error
Runtime error
File size: 22,850 Bytes
480bfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import time
import numbers
import re
import sys
import collections
import argparse
import yaml
from PIL import Image
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
try:
import tqdm
except ImportError:
pass
try:
from IPython.display import display as notebook_display
from IPython.display import clear_output as notebook_clear
except ImportError:
pass
#----------------------------------------------------------------------------
# Miscellaneous utils
class AttributeDict(dict):
"""
Dict where values can be accessed using attribute syntax.
Same as "EasyDict" in the NVIDIA stylegan git repository.
"""
def __getattr__(self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name, value):
self[name] = value
def __delattr__(self, name):
del self[name]
def __getstate__(self):
return dict(**self)
def __setstate__(self, state):
self.update(**state)
def __repr__(self):
return '{}({})'.format(
self.__class__.__name__,
', '.join('{}={}'.format(key, value) for key, value in self.items())
)
@classmethod
def convert_dict_recursive(cls, obj):
if isinstance(obj, dict):
for key in list(obj.keys()):
obj[key] = cls.convert_dict_recursive(obj[key])
if not isinstance(obj, cls):
return cls(**obj)
return obj
class Timer:
def __init__(self):
self.reset()
def __enter__(self):
self._t0 = time.time()
def __exit__(self, *args):
self._t += time.time() - self._t0
def value(self):
return self._t
def reset(self):
self._t = 0
def __str__(self):
"""
Get a string representation of the recorded time.
Returns:
time_as_string (str)
"""
value = self.value()
if not value or value >= 100:
return '{} s'.format(int(value))
elif value >= 1:
return '{:.3g} s'.format(value)
elif value >= 1e-3:
return '{:.3g} ms'.format(value * 1e+3)
elif value >= 1e-6:
return '{:.3g} us'.format(value * 1e+6)
elif value >= 1e-9:
return '{:.3g} ns'.format(value * 1e+9)
else:
return '{:.2E} s'.format(value)
def to_list(values):
if values is None:
return []
if isinstance(values, tuple):
return list(values)
if not isinstance(values, list):
return [values]
return values
def lerp(a, b, beta):
if isinstance(beta, numbers.Number):
if beta == 1:
return b
elif beta == 0:
return a
if torch.is_tensor(a) and a.dtype == torch.float32:
# torch lerp only available for fp32
return torch.lerp(a, b, beta)
# More numerically stable than a + beta * (b - a)
return (1 - beta) * a + beta * b
def _normalize(v):
return v * torch.rsqrt(torch.sum(v ** 2, dim=-1, keepdim=True))
def slerp(a, b, beta):
assert a.size() == b.size(), 'Size mismatch between ' + \
'slerp arguments, received {} and {}'.format(a.size(), b.size())
if not torch.is_tensor(beta):
beta = torch.tensor(beta).to(a)
a = _normalize(a)
b = _normalize(b)
d = torch.sum(a * b, axis=-1, keepdim=True)
p = beta * torch.acos(beta)
c = _normalize(b - d * a)
d = a * torch.cos(p) + c * torch.sin(p)
return _normalize(d)
#----------------------------------------------------------------------------
# Command line utils
def _parse_configs(configs):
kwargs = {}
for config in configs:
with open(config, 'r') as fp:
kwargs.update(yaml.safe_load(fp))
return kwargs
class ConfigArgumentParser(argparse.ArgumentParser):
_CONFIG_ARG_KEY = '_configs'
def __init__(self, *args, **kwargs):
super(ConfigArgumentParser, self).__init__(*args, **kwargs)
self.add_argument(
self._CONFIG_ARG_KEY,
nargs='*',
help='Any yaml-style config file whos values will override the defaults of this argument parser.',
type=str
)
def parse_args(self, args=None):
config_args = _parse_configs(
getattr(
super(ConfigArgumentParser, self).parse_args(args),
self._CONFIG_ARG_KEY
)
)
self.set_defaults(**config_args)
return super(ConfigArgumentParser, self).parse_args(args)
def bool_type(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def range_type(s):
"""
Accept either a comma separated list of numbers
'a,b,c' or a range 'a-c' and return as a list of ints.
"""
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return range(int(m.group(1)), int(m.group(2))+1)
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
# Dataset and generation of latents
class ResizeTransform:
def __init__(self, height, width, resize=True, mode='bicubic'):
if resize:
assert height and width, 'Height and width have to be given ' + \
'when resizing data.'
self.height = height
self.width = width
self.resize = resize
self.mode = mode
def __call__(self, tensor):
if self.height and self.width:
if tensor.size(1) != self.height or tensor.size(2) != self.width:
if self.resize:
kwargs = {}
if 'cubic' in self.mode or 'linear' in self.mode:
kwargs.update(align_corners=False)
tensor = F.interpolate(
tensor.unsqueeze(0),
size=(self.height, self.width),
mode=self.mode,
**kwargs
).squeeze(0)
else:
raise ValueError(
'Data shape incorrect, expected ({},{}) '.format(self.width, self.height) + \
'but got ({},{}) (width, height)'.format(tensor.size(2), tensor.size(1))
)
return tensor
def _PIL_RGB_loader(path):
return Image.open(path).convert('RGB')
def _PIL_grayscale_loader(path):
return Image.open(path).convert('L')
class ImageFolder(torchvision.datasets.ImageFolder):
def __init__(self,
*args,
mirror=False,
pixel_min=-1,
pixel_max=1,
height=None,
width=None,
resize=False,
resize_mode='bicubic',
grayscale=False,
**kwargs):
super(ImageFolder, self).__init__(
*args,
loader=_PIL_grayscale_loader if grayscale else _PIL_RGB_loader,
**kwargs
)
transforms = []
if mirror:
transforms.append(torchvision.transforms.RandomHorizontalFlip())
transforms.append(torchvision.transforms.ToTensor())
transforms.append(
torchvision.transforms.Normalize(
mean=[-(pixel_min / (pixel_max - pixel_min))],
std=[1. / (pixel_max - pixel_min)]
)
)
transforms.append(ResizeTransform(
height=height, width=width, resize=resize, mode=resize_mode))
self.transform = torchvision.transforms.Compose(transforms)
def _find_classes(self, *args, **kwargs):
classes, class_to_idx = super(ImageFolder, self)._find_classes(*args, **kwargs)
if not classes:
classes = ['']
class_to_idx = {'': 0}
return classes, class_to_idx
class PriorGenerator:
def __init__(self, latent_size, label_size, batch_size, device):
self.latent_size = latent_size
self.label_size = label_size
self.batch_size = batch_size
self.device = device
def __iter__(self):
return self
def __next__(self):
return self()
def __call__(self, batch_size=None, multi_latent_prob=0, seed=None):
if batch_size is None:
batch_size = self.batch_size
shape = [batch_size, self.latent_size]
if multi_latent_prob:
if seed is not None:
np.random.seed(seed)
if np.random.uniform() < multi_latent_prob:
shape = [batch_size, 2, self.latent_size]
if seed is not None:
torch.manual_seed(seed)
latents = torch.empty(*shape, device=self.device).normal_()
labels = None
if self.label_size:
label_shape = [batch_size]
labels = torch.randint(0, self.label_size, label_shape, device=self.device)
return latents, labels
#----------------------------------------------------------------------------
# Training utils
class MovingAverageModule:
def __init__(self,
from_module,
to_module=None,
param_beta=0.995,
buffer_beta=0,
device=None):
from_module = unwrap_module(from_module)
to_module = unwrap_module(to_module)
if device is None:
module = from_module
if to_module is not None:
module = to_module
device = next(module.parameters()).device
else:
device = torch.device(device)
self.from_module = from_module
if to_module is None:
self.module = from_module.clone().to(device)
else:
assert type(to_module) == type(from_module), \
'Mismatch between type of source and target module.'
assert set(self._get_named_parameters(to_module).keys()) \
== set(self._get_named_parameters(from_module).keys()), \
'Mismatch between parameters of source and target module.'
assert set(self._get_named_buffers(to_module).keys()) \
== set(self._get_named_buffers(from_module).keys()), \
'Mismatch between buffers of source and target module.'
self.module = to_module.to(device)
self.module.eval().requires_grad_(False)
self.param_beta = param_beta
self.buffer_beta = buffer_beta
self.device = device
def __getattr__(self, name):
try:
return super(object, self).__getattr__(name)
except AttributeError:
return getattr(self.module, name)
def update(self):
self._update_data(
from_data=self._get_named_parameters(self.from_module),
to_data=self._get_named_parameters(self.module),
beta=self.param_beta
)
self._update_data(
from_data=self._get_named_buffers(self.from_module),
to_data=self._get_named_buffers(self.module),
beta=self.buffer_beta
)
@staticmethod
def _update_data(from_data, to_data, beta):
for name in from_data.keys():
if name not in to_data:
continue
fr, to = from_data[name], to_data[name]
with torch.no_grad():
if beta == 0:
to.data.copy_(fr.data.to(to.data))
elif beta < 1:
to.data.copy_(lerp(fr.data.to(to.data), to.data, beta))
@staticmethod
def _get_named_parameters(module):
return {name: value for name, value in module.named_parameters()}
@staticmethod
def _get_named_buffers(module):
return {name: value for name, value in module.named_buffers()}
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def forward(self, *args, **kwargs):
self.module.eval()
args, args_in_device = move_to_device(args, self.device)
kwargs, kwargs_in_device = move_to_device(kwargs, self.device)
in_device = None
if args_in_device is not None:
in_device = args_in_device
if kwargs_in_device is not None:
in_device = kwargs_in_device
out = self.module(*args, **kwargs)
if in_device is not None:
out, _ = move_to_device(out, in_device)
return out
def move_to_device(value, device):
if torch.is_tensor(value):
value.to(device), value.device
orig_device = None
if isinstance(value, (tuple, list)):
values = []
for val in value:
_val, orig_device = move_to_device(val, device)
values.append(_val)
return type(value)(values), orig_device
if isinstance(value, dict):
if isinstance(value, collections.OrderedDict):
values = collections.OrderedDict()
else:
values = {}
for key, val in value.items():
_val, orig_device = move_to_device(val, device)
values[key] = val
return values, orig_device
return value, orig_device
_WRAPPER_CLASSES = (MovingAverageModule, nn.DataParallel, nn.parallel.DistributedDataParallel)
def unwrap_module(module):
if isinstance(module, _WRAPPER_CLASSES):
return module.module
return module
def get_grad_norm_from_optimizer(optimizer, norm_type=2):
"""
Get the gradient norm for some parameters contained in an optimizer.
Arguments:
optimizer (torch.optim.Optimizer)
norm_type (int): Type of norm. Default value is 2.
Returns:
norm (float)
"""
total_norm = 0
if optimizer is not None:
for param_group in optimizer.param_groups:
for p in param_group['params']:
if p.grad is not None:
with torch.no_grad():
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm.item()
#----------------------------------------------------------------------------
# printing and logging utils
class ValueTracker:
def __init__(self, beta=0.95):
self.beta = beta
self.values = {}
def add(self, name, value, beta=None):
if torch.is_tensor(value):
value = value.item()
if beta is None:
beta = self.beta
if name not in self.values:
self.values[name] = value
else:
self.values[name] = lerp(value, self.values[name], beta)
def __getitem__(self, key):
return self.values[key]
def __str__(self):
string = ''
for i, name in enumerate(sorted(self.values.keys())):
if i and i % 3 == 0:
string += '\n'
elif string:
string += ', '
format_string = '{}: {}'
if isinstance(self.values[name], float):
format_string = '{}: {:.4g}'
string += format_string.format(name, self.values[name])
return string
def is_notebook():
"""
Check if code is running from jupyter notebook.
Returns:
notebook (bool): True if running from jupyter notebook,
else False.
"""
try:
__IPYTHON__
return True
except NameError:
return False
def _progress_bar(count, total):
"""
Get a simple one-line string representing a progress bar.
Arguments:
count (int): Current count. Starts at 0.
total (int): Total count.
Returns:
pbar_string (str): The string progress bar.
"""
bar_len = 60
filled_len = int(round(bar_len * (count + 1) / float(total)))
bar = '=' * filled_len + '-' * (bar_len - filled_len)
return '[{}] {}/{}'.format(bar, count + 1, total)
class ProgressWriter:
"""
Handles writing output and displaying a progress bar. Automatically
adjust for notebooks. Supports outputting text
that is compatible with the progressbar (in notebooks the text is
refreshed instead of printed).
Arguments:
length (int, optional): Total length of the progressbar.
Default value is None.
progress_bar (bool, optional): Display a progressbar.
Default value is True.
clear (bool, optional): If running from a notebook, clear
the current cell's output. Default value is False.
"""
def __init__(self, length=None, progress_bar=True, clear=False):
if is_notebook() and clear:
notebook_clear()
if length is not None:
length = int(length)
self.length = length
self.count = 0
self._simple_pbar = False
if progress_bar and 'tqdm' not in sys.modules:
self._simple_pbar = True
progress_bar = progress_bar and 'tqdm' in sys.modules
self._progress_bar = None
if progress_bar:
pbar = tqdm.tqdm
if is_notebook():
pbar = tqdm.tqdm_notebook
if length is not None:
self._progress_bar = pbar(total=length, file=sys.stdout)
else:
self._progress_bar = pbar(file=sys.stdout)
if is_notebook():
self._writer = notebook_display(
_StrRepr(''),
display_id=time.asctime()
)
else:
if progress_bar:
self._writer = self._progress_bar
else:
self._writer = sys.stdout
def write(self, *lines, step=True):
"""
Output values to stdout (or a display object if called from notebook).
Arguments:
*lines: The lines to write (positional arguments).
step (bool): Update the progressbar if present.
Default value is True.
"""
string = '\n'.join(str(line) for line in lines if line and line.strip())
if self._simple_pbar:
string = _progress_bar(self.count, self.length) + '\n' + string
if is_notebook():
self._writer.update(_StrRepr(string))
else:
self._writer.write('\n\n' + string)
if hasattr(self._writer, 'flush'):
self._writer.flush()
if step:
self.step()
def step(self):
"""
Update the progressbar if present.
"""
self.count += 1
if self._progress_bar is not None:
self._progress_bar.update()
def __iter__(self):
return self
def __next__(self):
return next(self.rnge)
def close(self):
if hasattr(self._writer, 'close'):
can_close = True
try:
can_close = self._writer != sys.stdout and self._writer != sys.stderr
except AttributeError:
pass
if can_close:
self._writer.close()
if hasattr(self._progress_bar, 'close'):
self._progress_bar.close()
def __del__(self):
self.close()
class _StrRepr:
"""
A wrapper for strings that returns the string
on repr() calls. Used by notebooks.
"""
def __init__(self, string):
self.string = string
def __repr__(self):
return self.string
#----------------------------------------------------------------------------
# image utils
def tensor_to_PIL(image_tensor, pixel_min=-1, pixel_max=1):
image_tensor = image_tensor.cpu()
if pixel_min != 0 or pixel_max != 1:
image_tensor = (image_tensor - pixel_min) / (pixel_max - pixel_min)
image_tensor.clamp_(min=0, max=1)
to_pil = torchvision.transforms.functional.to_pil_image
if image_tensor.dim() == 4:
return [to_pil(img) for img in image_tensor]
return to_pil(image_tensor)
def PIL_to_tensor(image, pixel_min=-1, pixel_max=1):
to_tensor = torchvision.transforms.functional.to_tensor
if isinstance(image, (list, tuple)):
image_tensor = torch.stack([to_tensor(img) for img in image])
else:
image_tensor = to_tensor(image)
if pixel_min != 0 or pixel_max != 1:
image_tensor = image_tensor * (pixel_max - pixel_min) + pixel_min
return image_tensor
def stack_images_PIL(imgs, shape=None, individual_img_size=None):
"""
Concatenate multiple images into a grid within a single image.
Arguments:
imgs (Sequence of PIL.Image): Input images.
shape (list, tuple, int, optional): Shape of the grid. Should consist
of two values, (width, height). If an integer value is passed it
is used for both width and height. If no value is passed the shape
is infered from the number of images. Default value is None.
individual_img_size (list, tuple, int, optional): The size of the
images being concatenated. Default value is None.
Returns:
canvas (PIL.Image): Image containing input images in a grid.
"""
assert len(imgs) > 0, 'No images received.'
if shape is None:
size = int(np.ceil(np.sqrt(len(imgs))))
shape = [int(np.ceil(len(imgs) / size)), size]
else:
if isinstance(shape, numbers.Number):
shape = 2 * [shape]
assert len(shape) == 2, 'Shape should specify (width, height).'
if individual_img_size is None:
for i in range(len(imgs) - 1):
assert imgs[i].size == imgs[i + 1].size, \
'Images are of different sizes, please specify a ' + \
'size (width, height). Found sizes:\n' + \
', '.join(str(img.size) for img in imgs)
individual_img_size = imgs[0].size
else:
if not isinstance(individual_img_size, (tuple, list)):
individual_img_size = 2 * (individual_img_size,)
individual_img_size = tuple(individual_img_size)
for i in range(len(imgs)):
if imgs[i].size != individual_img_size:
imgs[i] = imgs[i].resize(individual_img_size)
width, height = individual_img_size
width, height = int(width), int(height)
canvas = Image.new(
'RGB',
(shape[0] * width, shape[1] * height),
(0, 0, 0, 0)
)
imgs = imgs.copy()
for h_i in range(shape[1]):
for w_i in range(shape[0]):
if len(imgs) > 0:
img = imgs.pop(0).convert('RGB')
offset = (w_i * width, h_i * height)
canvas.paste(img, offset)
return canvas
|