Spaces:
Runtime error
Runtime error
""" | |
Code adapted from https://github.com/mseitzer/pytorch-fid/ | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import models | |
try: | |
from torchvision.models.utils import load_state_dict_from_url | |
except ImportError: | |
from torch.utils.model_zoo import load_url as load_state_dict_from_url | |
# Inception weights ported to Pytorch from | |
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' | |
class InceptionV3FeatureExtractor(nn.Module): | |
"""Pretrained InceptionV3 network returning feature maps""" | |
# Index of default block of inception to return, | |
# corresponds to output of final average pooling | |
DEFAULT_BLOCK_INDEX = 3 | |
# Maps feature dimensionality to their output blocks indices | |
BLOCK_INDEX_BY_DIM = { | |
64: 0, # First max pooling features | |
192: 1, # Second max pooling featurs | |
768: 2, # Pre-aux classifier features | |
2048: 3 # Final average pooling features | |
} | |
def __init__(self, | |
output_block=DEFAULT_BLOCK_INDEX, | |
pixel_min=-1, | |
pixel_max=1): | |
""" | |
Build pretrained InceptionV3 | |
Arguments: | |
output_block (int): Index of block to return features of. | |
Possible values are: | |
- 0: corresponds to output of first max pooling | |
- 1: corresponds to output of second max pooling | |
- 2: corresponds to output which is fed to aux classifier | |
- 3: corresponds to output of final average pooling | |
pixel_min (float): Min value for inputs. Default value is -1. | |
pixel_max (float): Max value for inputs. Default value is 1. | |
""" | |
super(InceptionV3FeatureExtractor, self).__init__() | |
assert 0 <= output_block <= 3, '`output_block` can only be ' + \ | |
'0 <= `output_block` <= 3.' | |
inception = fid_inception_v3() | |
blocks = [] | |
# Block 0: input to maxpool1 | |
block0 = [ | |
inception.Conv2d_1a_3x3, | |
inception.Conv2d_2a_3x3, | |
inception.Conv2d_2b_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
blocks.append(nn.Sequential(*block0)) | |
# Block 1: maxpool1 to maxpool2 | |
if output_block >= 1: | |
block1 = [ | |
inception.Conv2d_3b_1x1, | |
inception.Conv2d_4a_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
blocks.append(nn.Sequential(*block1)) | |
# Block 2: maxpool2 to aux classifier | |
if output_block >= 2: | |
block2 = [ | |
inception.Mixed_5b, | |
inception.Mixed_5c, | |
inception.Mixed_5d, | |
inception.Mixed_6a, | |
inception.Mixed_6b, | |
inception.Mixed_6c, | |
inception.Mixed_6d, | |
inception.Mixed_6e, | |
] | |
blocks.append(nn.Sequential(*block2)) | |
# Block 3: aux classifier to final avgpool | |
if output_block >= 3: | |
block3 = [ | |
inception.Mixed_7a, | |
inception.Mixed_7b, | |
inception.Mixed_7c, | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
] | |
blocks.append(nn.Sequential(*block3)) | |
self.main = nn.Sequential(*blocks) | |
self.pixel_nin = pixel_min | |
self.pixel_max = pixel_max | |
self.requires_grad_(False) | |
self.eval() | |
def _scale(self, x): | |
if self.pixel_min != -1 or self.pixel_max != 1: | |
x = (2*x - self.pixel_min - self.pixel_max) \ | |
/ (self.pixel_max - self.pixel_min) | |
return x | |
def forward(self, input): | |
""" | |
Get Inception feature maps. | |
Arguments: | |
input (torch.Tensor) | |
Returns: | |
feature_maps (torch.Tensor) | |
""" | |
return self.main(input) | |
def fid_inception_v3(): | |
"""Build pretrained Inception model for FID computation | |
The Inception model for FID computation uses a different set of weights | |
and has a slightly different structure than torchvision's Inception. | |
This method first constructs torchvision's Inception and then patches the | |
necessary parts that are different in the FID Inception model. | |
""" | |
inception = models.inception_v3(num_classes=1008, | |
aux_logits=False, | |
pretrained=False) | |
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) | |
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) | |
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) | |
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) | |
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) | |
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) | |
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) | |
inception.Mixed_7b = FIDInceptionE_1(1280) | |
inception.Mixed_7c = FIDInceptionE_2(2048) | |
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) | |
inception.load_state_dict(state_dict) | |
return inception | |
class FIDInceptionA(models.inception.InceptionA): | |
"""InceptionA block patched for FID computation""" | |
def __init__(self, in_channels, pool_features): | |
super(FIDInceptionA, self).__init__(in_channels, pool_features) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch5x5 = self.branch5x5_1(x) | |
branch5x5 = self.branch5x5_2(branch5x5) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionC(models.inception.InceptionC): | |
"""InceptionC block patched for FID computation""" | |
def __init__(self, in_channels, channels_7x7): | |
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch7x7 = self.branch7x7_1(x) | |
branch7x7 = self.branch7x7_2(branch7x7) | |
branch7x7 = self.branch7x7_3(branch7x7) | |
branch7x7dbl = self.branch7x7dbl_1(x) | |
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionE_1(models.inception.InceptionE): | |
"""First InceptionE block patched for FID computation""" | |
def __init__(self, in_channels): | |
super(FIDInceptionE_1, self).__init__(in_channels) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = [ | |
self.branch3x3_2a(branch3x3), | |
self.branch3x3_2b(branch3x3), | |
] | |
branch3x3 = torch.cat(branch3x3, 1) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = [ | |
self.branch3x3dbl_3a(branch3x3dbl), | |
self.branch3x3dbl_3b(branch3x3dbl), | |
] | |
branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionE_2(models.inception.InceptionE): | |
"""Second InceptionE block patched for FID computation""" | |
def __init__(self, in_channels): | |
super(FIDInceptionE_2, self).__init__(in_channels) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = [ | |
self.branch3x3_2a(branch3x3), | |
self.branch3x3_2b(branch3x3), | |
] | |
branch3x3 = torch.cat(branch3x3, 1) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = [ | |
self.branch3x3dbl_3a(branch3x3dbl), | |
self.branch3x3dbl_3b(branch3x3dbl), | |
] | |
branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
# Patch: The FID Inception model uses max pooling instead of average | |
# pooling. This is likely an error in this specific Inception | |
# implementation, as other Inception models use average pooling here | |
# (which matches the description in the paper). | |
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) | |