hr16's picture
Fork adriansahlman's stylegan2_pytorch
480bfbc
import copy
from collections import OrderedDict
import numpy as np
import torch
from torch import nn
from . import modules, utils
class _BaseModel(nn.Module):
"""
Adds some base functionality to models that inherit this class.
"""
def __init__(self):
super(_BaseModel, self).__setattr__('kwargs', {})
super(_BaseModel, self).__setattr__('_defaults', {})
super(_BaseModel, self).__init__()
def _update_kwargs(self, **kwargs):
"""
Update the current keyword arguments. Overrides any
default values set.
Arguments:
**kwargs: Keyword arguments
"""
self.kwargs.update(**kwargs)
def _update_default_kwargs(self, **defaults):
"""
Update the default values for keyword arguments.
Arguments:
**defaults: Keyword arguments
"""
self._defaults.update(**defaults)
def __getattr__(self, name):
"""
Try to get the keyword argument for this attribute.
If no keyword argument of this name exists, try to
get the attribute directly from this object instead.
Arguments:
name (str): Name of keyword argument or attribute.
Returns:
value
"""
try:
return self.__getattribute__('kwargs')[name]
except KeyError:
try:
return self.__getattribute__('_defaults')[name]
except KeyError:
return super(_BaseModel, self).__getattr__(name)
def __setattr__(self, name, value):
"""
Try to set the keyword argument for this attribute.
If no keyword argument of this name exists, set
the attribute directly for this object instead.
Arguments:
name (str): Name of keyword argument or attribute.
value
"""
if name != '__dict__' and (name in self.kwargs or name in self._defaults):
self.kwargs[name] = value
else:
super(_BaseModel, self).__setattr__(name, value)
def __delattr__(self, name):
"""
Try to delete the keyword argument for this attribute.
If no keyword argument of this name exists, delete
the attribute of this object instead.
Arguments:
name (str): Name of keyword argument or attribute.
"""
deleted = False
if name in self.kwargs:
del self.kwargs[name]
deleted = True
if name in self._defaults:
del self._defaults[name]
deleted = True
if not deleted:
super(_BaseModel, self).__delattr__(name)
def clone(self):
"""
Create a copy of this model.
Returns:
model_copy (nn.Module)
"""
return copy.deepcopy(self)
def _get_state_dict(self):
"""
Delegate function for getting the state dict.
Should be overridden if state dict has to be
fetched in abnormal way.
"""
return self.state_dict()
def _set_state_dict(self, state_dict):
"""
Delegate function for loading the state dict.
Should be overridden if state dict has to be
loaded in abnormal way.
"""
self.load_state_dict(state_dict)
def _serialize(self, half=False):
"""
Turn model arguments and weights into
a dict that can safely be pickled and unpickled.
Arguments:
half (bool): Save weights in half precision.
Default value is False.
"""
state_dict = self._get_state_dict()
for key in state_dict.keys():
values = state_dict[key].cpu()
if torch.is_floating_point(values):
if half:
values = values.half()
else:
values = values.float()
state_dict[key] = values
return {
'name': self.__class__.__name__,
'kwargs': self.kwargs,
'state_dict': state_dict
}
@classmethod
def load(cls, fpath, map_location='cpu'):
"""
Load a model of this class.
Arguments:
fpath (str): File path of saved model.
map_location (str, int, torch.device): Weights and
buffers will be loaded into this device.
Default value is 'cpu'.
"""
model = load(fpath, map_location=map_location)
assert isinstance(model, cls), 'Trying to load a `{}` '.format(type(model)) + \
'model from {}.load()'.format(cls.__name__)
return model
def save(self, fpath, half=False):
"""
Save this model.
Arguments:
fpath (str): File path of save location.
half (bool): Save weights in half precision.
Default value is False.
"""
torch.save(self._serialize(half=half), fpath)
def _deserialize(state):
"""
Load a model from its serialized state.
Arguments:
state (dict)
Returns:
model (nn.Module): Model that inherits `_BaseModel`.
"""
state = state.copy()
name = state.pop('name')
if name not in globals():
raise NameError('Class {} is not defined.'.format(state['name']))
kwargs = state.pop('kwargs')
state_dict = state.pop('state_dict')
# Assume every other entry in the state is a serialized
# keyword argument.
for key in list(state.keys()):
kwargs[key] = _deserialize(state.pop(key))
model = globals()[name](**kwargs)
model._set_state_dict(state_dict)
return model
def load(fpath, map_location='cpu'):
"""
Load a model.
Arguments:
fpath (str): File path of saved model.
map_location (str, int, torch.device): Weights and
buffers will be loaded into this device.
Default value is 'cpu'.
Returns:
model (nn.Module): Model that inherits `_BaseModel`.
"""
if map_location is not None:
map_location = torch.device(map_location)
return _deserialize(torch.load(fpath, map_location=map_location))
def save(model, fpath, half=False):
"""
Save a model.
Arguments:
model (nn.Module): Wrapped or unwrapped module
that inherits `_BaseModel`.
fpath (str): File path of save location.
half (bool): Save weights in half precision.
Default value is False.
"""
utils.unwrap_module(model).save(fpath, half=half)
class Generator(_BaseModel):
"""
A wrapper class for the latent mapping model
and synthesis (generator) model.
Keyword Arguments:
G_mapping (GeneratorMapping)
G_synthesis (GeneratorSynthesis)
dlatent_avg_beta (float): The beta value
of the exponential moving average
of the dlatents. This statistic
is used for truncation of dlatents.
Default value is 0.995
"""
def __init__(self, *, G_mapping, G_synthesis, **kwargs):
super(Generator, self).__init__()
self._update_default_kwargs(
dlatent_avg_beta=0.995
)
self._update_kwargs(**kwargs)
assert isinstance(G_mapping, GeneratorMapping), \
'`G_mapping` has to be an instance of `model.GeneratorMapping`'
assert isinstance(G_synthesis, GeneratorSynthesis), \
'`G_synthesis` has to be an instance of `model.GeneratorSynthesis`'
self.G_mapping = G_mapping
self.G_synthesis = G_synthesis
self.register_buffer('dlatent_avg', torch.zeros(self.G_mapping.latent_size))
self.set_truncation()
@property
def latent_size(self):
return self.G_mapping.latent_size
@property
def label_size(self):
return self.G_mapping.label_size
def _get_state_dict(self):
state_dict = OrderedDict()
self._save_to_state_dict(destination=state_dict, prefix='', keep_vars=False)
return state_dict
def _set_state_dict(self, state_dict):
self.load_state_dict(state_dict, strict=False)
def _serialize(self, half=False):
state = super(Generator, self)._serialize(half=half)
for name in ['G_mapping', 'G_synthesis']:
state[name] = getattr(self, name)._serialize(half=half)
return state
def set_truncation(self, truncation_psi=None, truncation_cutoff=None):
"""
Set the truncation of dlatents before they are passed to the
synthesis model.
Arguments:
truncation_psi (float): Beta value of linear interpolation between
the average dlatent and the current dlatent. 0 -> 100% average,
1 -> 0% average.
truncation_cutoff (int, optional): Truncation is only used up until
this affine layer index.
"""
layer_psi = None
if truncation_psi is not None and truncation_psi != 1 and truncation_cutoff != 0:
layer_psi = torch.ones(len(self.G_synthesis))
if truncation_cutoff is None:
layer_psi *= truncation_psi
else:
layer_psi_mask = torch.arange(len(layer_psi)) < truncation_cutoff
layer_psi[layer_psi_mask] *= truncation_psi
layer_psi = layer_psi.view(1, -1, 1)
layer_psi = layer_psi.to(self.dlatent_avg)
self.register_buffer('layer_psi', layer_psi)
def random_noise(self):
"""
Set noise of synthesis model to be random for every
input.
"""
self.G_synthesis.random_noise()
def static_noise(self, trainable=False, noise_tensors=None):
"""
Set up injected noise to be fixed (alternatively trainable).
Get the fixed noise tensors (or parameters).
Arguments:
trainable (bool): Make noise trainable and return
parameters instead of normal tensors.
noise_tensors (list, optional): List of tensors to use as static noise.
Has to be same length as number of noise injection layers.
Returns:
noise_tensors (list): List of the noise tensors (or parameters).
"""
return self.G_synthesis.static_noise(trainable=trainable, noise_tensors=noise_tensors)
def __len__(self):
"""
Get the number of affine (style) layers of the synthesis model.
"""
return len(self.G_synthesis)
def truncate(self, dlatents):
"""
Truncate the dlatents.
Arguments:
dlatents (torch.Tensor)
Returns:
truncated_dlatents (torch.Tensor)
"""
if self.layer_psi is not None:
dlatents = utils.lerp(self.dlatent_avg, dlatents, self.layer_psi)
return dlatents
def forward(self,
latents=None,
labels=None,
dlatents=None,
return_dlatents=False,
mapping_grad=True,
latent_to_layer_idx=None):
"""
Synthesize some data from latent inputs. The latents
can have an extra optional dimension, where latents
from this dimension will be distributed to the different
affine layers of the synthesis model. The distribution
is a index to index mapping if the amount of latents
is the same as the number of affine layers. Otherwise,
latents are distributed consecutively for a random
number of layers before the next latent is used for
some random amount of following layers. If the size
of this extra dimension is 1 or it does not exist,
the same latent is passed to every affine layer.
Latents are first mapped to disentangled latents (`dlatents`)
and are then optionally truncated (if model is in eval mode
and truncation options have been set.) Set up truncation by
calling `set_truncation()`.
Arguments:
latents (torch.Tensor): The latent values of shape
(batch_size, N, num_features) where N is an
optional dimension. This argument is not required
if `dlatents` is passed.
labels (optional): A sequence of labels, one for
each index in the batch dimension of the input.
dlatents (torch.Tensor, optional): Skip the latent
mapping model and feed these dlatents straight
to the synthesis model. The same type of distribution
to affine layers as is described in this function
description is also used for dlatents.
NOTE: Explicitly passing dlatents to this function
will stop them from being truncated. If required,
do this manually by calling the `truncate()` function
of this model.
return_dlatents (bool): Return not only the synthesized
data, but also the dlatents. The dlatents tensor
will also have its `requires_grad` set to True
before being passed to the synthesis model for
use with pathlength regularization during training.
This requires training to be enabled (`thismodel.train()`).
Default value is False.
mapping_grad (bool): Let gradients be calculated when passing
latents through the latent mapping model. Should be
set to False when only optimising the synthesiser parameters.
Default value is True.
latent_to_layer_idx (list, tuple, optional): A manual mapping
of the latent vectors to the affine layers of this network.
Each position in this sequence maps the affine layer of the
same index to an index of the latents. The latents should
have a shape of (batch_size, N, num_features) and this argument
should be a list of the same length as number of affine layers
in this model (can be found by calling len(thismodel)) with values
in the range [0, N - 1]. Without this argument, latents are distributed
according to this function description.
"""
# Keep track of number of latents for each batch index.
num_latents = 1
# Keep track of if dlatent truncation is enabled or disabled.
truncate = False
if dlatents is None:
# Calculate dlatents
# dlatent truncation enabled as dlatents were not explicitly given
truncate = True
assert latents is not None, 'Either the `latents` ' + \
'or the `dlatents` argument is required.'
if labels is not None:
if not torch.is_tensor(labels):
labels = torch.tensor(labels, dtype=torch.int64)
# If latents are passed with the layer dimension we need
# to flatten it to shape (N, latent_size) before passing
# it to the latent mapping model.
if latents.dim() == 3:
num_latents = latents.size(1)
latents = latents.view(-1, latents.size(-1))
# Labels need to repeated for the extra dimension of latents.
if labels is not None:
labels = labels.unsqueeze(1).repeat(1, num_latents).view(-1)
# Dont allow this operation to create a computation graph for
# backprop unless specified. This is useful for pathreg as it
# only regularizes the parameters of the synthesiser and not
# to latent mapping model.
with torch.set_grad_enabled(mapping_grad):
dlatents = self.G_mapping(latents=latents, labels=labels)
else:
if dlatents.dim() == 3:
num_latents = dlatents.size(1)
# Now we expand/repeat the number of latents per batch index until it is
# the same number as affine layers in our synthesis model.
dlatents = dlatents.view(-1, num_latents, dlatents.size(-1))
if num_latents == 1:
dlatents = dlatents.expand(
dlatents.size(0), len(self), dlatents.size(2))
elif num_latents != len(self):
assert dlatents.size(1) <= len(self), \
'More latents ({}) than number '.format(dlatents.size(1)) + \
'of generator layers ({}) received.'.format(len(self))
if not latent_to_layer_idx:
# Lets randomly distribute the latents to
# ranges of layers (each latent is assigned
# to a random number of consecutive layers).
cutoffs = np.random.choice(
np.arange(1, len(self)),
dlatents.size(1) - 1,
replace=False
)
cutoffs = [0] + sorted(cutoffs.tolist()) + [len(self)]
dlatents = [
dlatents[:, i].unsqueeze(1).expand(
-1, cutoffs[i + 1] - cutoffs[i], dlatents.size(2))
for i in range(dlatents.size(1))
]
dlatents = torch.cat(dlatents, dim=1)
else:
# Assign latents as specified by argument
assert len(latent_to_layer_idx) == len(self), \
'The latent index to layer index mapping does ' + \
'not have the same number of elements ' + \
'({}) as the number of '.format(len(latent_to_layer_idx)) + \
'generator layers ({})'.format(len(self))
dlatents = dlatents[:, latent_to_layer_idx]
# Update moving average of dlatents when training
if self.training and self.dlatent_avg_beta != 1:
with torch.no_grad():
batch_dlatent_avg = dlatents[:, 0].mean(dim=0)
self.dlatent_avg = utils.lerp(
batch_dlatent_avg, self.dlatent_avg, self.dlatent_avg_beta)
# Truncation is only applied when dlatents are not explicitly
# given and the model is in evaluation mode.
if truncate and not self.training:
dlatents = self.truncate(dlatents)
# One of the reasons we might want to return the dlatents is for
# pathreg, in which case the dlatents need to require gradients
# before being passed to the synthesiser. This should only be
# the case when the model is in training mode.
if return_dlatents and self.training:
dlatents.requires_grad_(True)
synth = self.G_synthesis(latents=dlatents)
if return_dlatents:
return synth, dlatents
return synth
# Base class for the parameterized models. This is used as parent
# class to reduce duplicate code and documentation for shared arguments.
class _BaseParameterizedModel(_BaseModel):
"""
activation (str, callable, nn.Module): The non-linear
activation function to use.
Default value is leaky relu with a slope of 0.2.
lr_mul (float): The learning rate multiplier for this
model. When loading weights of previously trained
networks, this value has to be the same as when
the network was trained for the outputs to not
change (as this is used to scale the weights).
Default value depends on model type and can
be found in the original paper for StyleGAN.
weight_scale (bool): Use weight scaling for
equalized learning rate. Default value
is True.
eps (float): Epsilon value added for numerical stability.
Default value is 1e-8."""
def __init__(self, **kwargs):
super(_BaseParameterizedModel, self).__init__()
self._update_default_kwargs(
activation='lrelu:0.2',
lr_mul=1,
weight_scale=True,
eps=1e-8
)
self._update_kwargs(**kwargs)
class GeneratorMapping(_BaseParameterizedModel):
"""
Latent mapping model, handles the
transformation of latents into disentangled
latents.
Keyword Arguments:
latent_size (int): The size of the latent vectors.
This will also be the size of the disentangled
latent vectors.
Default value is 512.
label_size (int, optional): The number of different
possible labels. Use for label conditioning of
the GAN. Unused by default.
out_size (int, optional): The size of the disentangled
latents output by this model. If not specified,
the outputs will have the same size as the input
latents.
num_layers (int): Number of dense layers in this
model. Default value is 8.
hidden (int, optional): Number of hidden features of layers.
If unspecified, this is the same size as the latents.
normalize_input (bool): Normalize the input of this
model. Default value is True."""
__doc__ += _BaseParameterizedModel.__doc__
def __init__(self, **kwargs):
super(GeneratorMapping, self).__init__()
self._update_default_kwargs(
latent_size=512,
label_size=0,
out_size=None,
num_layers=8,
hidden=None,
normalize_input=True,
lr_mul=0.01,
)
self._update_kwargs(**kwargs)
# Find in and out features of first dense layer
in_features = self.latent_size
out_features = self.hidden or self.latent_size
# Each class label has its own embedded vector representation.
self.embedding = None
if self.label_size:
self.embedding = nn.Embedding(self.label_size, self.latent_size)
# The input is now the latents concatenated with
# the label embeddings.
in_features += self.latent_size
dense_layers = []
for i in range(self.num_layers):
if i == self.num_layers - 1:
# Set out features for last dense layer
out_features = self.out_size or self.latent_size
dense_layers.append(
modules.BiasActivationWrapper(
layer=modules.DenseLayer(
in_features=in_features,
out_features=out_features,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale,
gain=1
),
features=out_features,
use_bias=True,
activation=self.activation,
bias_init=0,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale
)
)
in_features = out_features
self.main = nn.Sequential(*dense_layers)
def forward(self, latents, labels=None):
"""
Get the disentangled latents from the input latents
and optional labels.
Arguments:
latents (torch.Tensor): Tensor of shape (batch_size, latent_size).
labels (torch.Tensor, optional): Labels for conditioning of latents
if there are any.
Returns:
dlatents (torch.Tensor): Disentangled latents of same shape as
`latents` argument.
"""
assert latents.dim() == 2 and latents.size(-1) == self.latent_size, \
'Incorrect input shape. Should be ' + \
'(batch_size, {}) '.format(self.latent_size) + \
'but received {}'.format(tuple(latents.size()))
x = latents
if labels is not None:
assert self.embedding is not None, \
'No embedding layer found, please ' + \
'specify the number of possible labels ' + \
'in the constructor of this class if ' + \
'using labels.'
assert len(labels) == len(latents), \
'Received different number of labels ' + \
'({}) and latents ({}).'.format(len(labels), len(latents))
if not torch.is_tensor(labels):
labels = torch.tensor(labels, dtype=torch.int64)
assert labels.dtype == torch.int64, \
'Labels should be integer values ' + \
'of dtype torch.in64 (long)'
y = self.embedding(labels)
x = torch.cat([x, y], dim=-1)
else:
assert self.embedding is None, 'Missing input labels.'
if self.normalize_input:
x = x * torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
return self.main(x)
# Base class for the synthesising and discriminating models. This is used as parent
# class to reduce duplicate code and documentation for shared arguments.
class _BaseAdverserialModel(_BaseParameterizedModel):
"""
data_channels (int): Number of channels of the data.
Default value is 3.
base_shape (list, tuple): This is the shape of the feature
activations when it is most compact and still has the
same number of dims as the data. This is one of the
arguments that controls what shape the data will be.
the value of each size in the shape is going to double
in size for number of `channels` - 1.
Example:
`data_channels=3`
`base_shape=(4, 2)`
and 9 `channels` in total will give us a shape of
(3, 4 * 2^(9 - 1), 2 * 2^(9 - 1)) which is the
same as (3, 1024, 512).
Default value is (4, 4).
channels (int, list, optional): The channels of each block
of layers. If int, this many channel values will be
created with sensible default values optimal for image
synthesis. If list, the number of blocks in this model
will be the same as the number of channels in the list.
Default value is the int value 9 which will create the
following channels: [32, 32, 64, 128, 256, 512, 512, 512, 512].
These are the channel values used in the stylegan2 paper for
their FFHQ-trained face generation network.
If channels is given as a list it should be in the order:
Generator: last layer -> first layer
Discriminator: first layer -> last layer
resnet (bool): Use resnet connections.
Defaults:
Generator: False
Discriminator: True
skip (bool): Use skip connections for data.
Defaults:
Generator: True
Discriminator: False
fused_resample (bool): Fuse any up- or downsampling that
is paired with a convolutional layer into a strided
convolution (transposed if upsampling was used).
Default value is True.
conv_resample_mode (str): The resample mode of up- or
downsampling layers. If `fused_resample=True` only
'FIR' and 'none' can be used. Else, 'FIR' or anything
that can be passed to torch.nn.functional.interpolate
is a valid mode (and 'max' but only for downsampling
operations). Default value is 'FIR'.
conv_filter (int, list): The filter to use if
`conv_resample_mode='FIR'`. If int, a low
pass filter of this size will be used. If list,
the filter is explicitly specified. If the filter
is of a single dimension it will be expanded to
the number of dimensions of the data. Default
value is a low pass filter of [1, 3, 3, 1].
skip_resample_mode (str): If `skip=True`, this
mode is used for the resamplings of skip
connections of different sizes. Same possible
values as `conv_filter` (except 'none', which
can not be used). Default value is 'FIR'.
skip_filter (int, list): Same description as
`conv_filter` but for skip connections.
Only used if `skip_resample_mode='FIR'` and
`skip=True`. Default value is a low pass
filter of [1, 3, 3, 1].
kernel_size (int): The size of the convolutional kernels.
Default value is 3.
conv_pad_mode (str): The padding mode for convolutional
layers. Has to be one of 'constant', 'reflect',
'replicate' or 'circular'. Default value is
'constant'.
conv_pad_constant (float): The value to use for conv
padding if `conv_pad_mode='constant'`. Default
value is 0.
filter_pad_mode (str): The padding mode for FIR
filters. Same possible values as `conv_pad_mode`.
Default value is 'constant'.
filter_pad_constant (float): The value to use for FIR
padding if `filter_pad_mode='constant'`. Default
value is 0.
pad_once (bool): If FIR filter is used in conjunction with a
conv layer, do all the padding for both convolution and
FIR in the FIR layer instead of once per layer.
Default value is True.
conv_block_size (int): The number of conv layers in
each conv block. Default value is 2."""
__doc__ += _BaseParameterizedModel.__doc__
def __init__(self, **kwargs):
super(_BaseAdverserialModel, self).__init__()
self._update_default_kwargs(
data_channels=3,
base_shape=(4, 4),
channels=9,
resnet=False,
skip=False,
fused_resample=True,
conv_resample_mode='FIR',
conv_filter=[1, 3, 3, 1],
skip_resample_mode='FIR',
skip_filter=[1, 3, 3, 1],
kernel_size=3,
conv_pad_mode='constant',
conv_pad_constant=0,
filter_pad_mode='constant',
filter_pad_constant=0,
pad_once=True,
conv_block_size=2,
)
self._update_kwargs(**kwargs)
self.dim = len(self.base_shape)
assert 1 <= self.dim <= 3, '`base_shape` can only have 1, 2 or 3 dimensions.'
if isinstance(self.channels, int):
# Create the specified number of channel values with sensible
# sizes (these values do well for image synthesis).
num_channels = self.channels
self.channels = [min(32 * 2 ** i, 512) for i in range(min(8, num_channels))]
if len(self.channels) < num_channels:
self.channels = [32] * (num_channels - len(self.channels)) + self.channels
class GeneratorSynthesis(_BaseAdverserialModel):
"""
The synthesis model that takes latents and synthesises
some data.
Keyword Arguments:
latent_size (int): The size of the latent vectors.
This will also be the size of the disentangled
latent vectors.
Default value is 512.
demodulate (bool): Normalize feature outputs from conv
layers. Default value is True.
modulate_data_out (bool): Apply style to the data output
layers. These layers are projections of the feature
maps into the space of the data. Default value is True.
noise (bool): Add noise after each conv style layer.
Default value is True."""
__doc__ += _BaseAdverserialModel.__doc__
def __init__(self, **kwargs):
super(GeneratorSynthesis, self).__init__()
self._update_default_kwargs(
latent_size=512,
demodulate=True,
modulate_data_out=True,
noise=True,
resnet=False,
skip=True
)
self._update_kwargs(**kwargs)
# The constant input of the model has no activations
# normalization, it is just passed straight to the first
# layer of the model.
self.const = torch.nn.Parameter(
torch.empty(self.channels[-1], *self.base_shape).normal_()
)
conv_block_kwargs = dict(
latent_size=self.latent_size,
demodulate=self.demodulate,
resnet=self.resnet,
up=True,
num_layers=self.conv_block_size,
filter=self.conv_filter,
activation=self.activation,
mode=self.conv_resample_mode,
fused=self.fused_resample,
kernel_size=self.kernel_size,
pad_mode=self.conv_pad_mode,
pad_constant=self.conv_pad_constant,
filter_pad_mode=self.filter_pad_mode,
filter_pad_constant=self.filter_pad_constant,
pad_once=self.pad_once,
noise=self.noise,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale,
gain=1,
dim=self.dim,
eps=self.eps
)
self.conv_blocks = nn.ModuleList()
# The first convolutional layer is slightly different
# from the following convolutional blocks but can still
# be represented as a convolutional block if we change
# some of its arguments.
self.conv_blocks.append(
modules.GeneratorConvBlock(
**{
**conv_block_kwargs,
'in_channels': self.channels[-1],
'out_channels': self.channels[-1],
'resnet': False,
'up': False,
'num_layers': 1
}
)
)
# The rest of the convolutional blocks all look the same
# except for number of input and output channels
for i in range(1, len(self.channels)):
self.conv_blocks.append(
modules.GeneratorConvBlock(
in_channels=self.channels[-i],
out_channels=self.channels[-i - 1],
**conv_block_kwargs
)
)
# If not using the skip architecture, only one
# layer will project the feature maps into
# the space of the data (from the activations of
# the last convolutional block). If using the skip
# architecture, every block will have its
# own projection layer instead.
self.to_data_layers = nn.ModuleList()
for i in range(1, len(self.channels) + 1):
to_data = None
if i == len(self.channels) or self.skip:
to_data = modules.BiasActivationWrapper(
layer=modules.ConvLayer(
**{
**conv_block_kwargs,
'in_channels': self.channels[-i],
'out_channels': self.data_channels,
'modulate': self.modulate_data_out,
'demodulate': False,
'kernel_size': 1
}
),
**{
**conv_block_kwargs,
'features': self.data_channels,
'use_bias': True,
'activation': 'linear',
'bias_init': 0
}
)
self.to_data_layers.append(to_data)
# When the skip architecture is used we need to
# upsample data outputs of previous convolutional
# blocks so that it can be added to the data output
# of the current convolutional block.
self.upsample = None
if self.skip:
self.upsample = modules.Upsample(
mode=self.skip_resample_mode,
filter=self.skip_filter,
filter_pad_mode=self.filter_pad_mode,
filter_pad_constant=self.filter_pad_constant,
gain=1,
dim=self.dim
)
# Calculate the number of latents required
# in the input.
self._num_latents = 1 + self.conv_block_size * (len(self.channels) - 1)
# Only the final data output layer uses
# its own latent input when being modulated.
# The other data output layers recycles latents
# from the next convolutional block.
if self.modulate_data_out:
self._num_latents += 1
def __len__(self):
"""
Get the number of affine (style) layers of this model.
"""
return self._num_latents
def random_noise(self):
"""
Set injected noise to be random for each new input.
"""
for module in self.modules():
if isinstance(module, modules.NoiseInjectionWrapper):
module.random_noise()
def static_noise(self, trainable=False, noise_tensors=None):
"""
Set up injected noise to be fixed (alternatively trainable).
Get the fixed noise tensors (or parameters).
Arguments:
trainable (bool): Make noise trainable and return
parameters instead of normal tensors.
noise_tensors (list, optional): List of tensors to use as static noise.
Has to be same length as number of noise injection layers.
Returns:
noise_tensors (list): List of the noise tensors (or parameters).
"""
rtn_tensors = []
if not self.noise:
return rtn_tensors
for module in self.modules():
if isinstance(module, modules.NoiseInjectionWrapper):
has_noise_shape = module.has_noise_shape()
device = module.weight.device
dtype = module.weight.dtype
break
# If noise layers dont have the shape that the noise should be
# we first need to pass some data through the network once for
# these layers to record the shape. To create noise tensors
# we need to know what size they should be.
if not has_noise_shape:
with torch.no_grad():
self(torch.zeros(
1, len(self), self.latent_size, device=device, dtype=dtype))
i = 0
for block in self.conv_blocks:
for layer in block.conv_block:
for module in layer.modules():
if isinstance(module, modules.NoiseInjectionWrapper):
noise_tensor = None
if noise_tensors is not None:
if i < len(noise_tensors):
noise_tensor = noise_tensors[i]
i += 1
else:
rtn_tensors.append(None)
continue
rtn_tensors.append(
module.static_noise(trainable=trainable, noise_tensor=noise_tensor))
if noise_tensors is not None:
assert len(rtn_tensors) == len(noise_tensors), \
'Got a list of {} '.format(len(noise_tensors)) + \
'noise tensors but there are ' + \
'{} noise layers in this model'.format(len(rtn_tensors))
return rtn_tensors
def forward(self, latents):
"""
Synthesise some data from input latents.
Arguments:
latents (torch.Tensor): Latent vectors of shape
(batch_size, num_affine_layers, latent_size)
where num_affine_layers is the value returned
by __len__() of this class.
Returns:
synthesised (torch.Tensor): Synthesised data.
"""
assert latents.dim() == 3 and latents.size(1) == len(self), \
'Input mismatch, expected latents of shape ' + \
'(batch_size, {}, latent_size) '.format(len(self)) + \
'but got {}.'.format(tuple(latents.size()))
# Declare our feature activations variable
# and give it the value of our const parameter with
# an added batch dimension.
x = self.const.unsqueeze(0)
# Declare our data (output) variable
y = None
# Start counting style layers used. This is used for specifying
# which latents should be passed to the current block in the loop.
layer_idx = 0
for block, to_data in zip(self.conv_blocks, self.to_data_layers):
# Get the latents for the style layers in this block.
block_latents = latents[:, layer_idx:layer_idx + len(block)]
x = block(input=x, latents=block_latents)
layer_idx += len(block)
# Upsample the data output of the previous block to fit
# the data output size of this block so that they can
# be added together. Only performed for 'skip' architectures.
if self.upsample is not None and layer_idx < len(self):
if y is not None:
y = self.upsample(y)
# Combine the data output of this block with any previous
# blocks outputs if using 'skip' architecture, else only
# perform this operation for the very last block outputs.
if to_data is not None:
t = to_data(input=x, latent=latents[:, layer_idx])
y = t if y is None else y + t
return y
class Discriminator(_BaseAdverserialModel):
"""
The discriminator scores data inputs.
Keyword Arguments:
label_size (int, optional): The number of different
possible labels. Use for label conditioning of
the GAN. The discriminator will calculate scores
for each possible label and only returns the score
from the label passed with the input data. If no
labels are used, only one score is calculated.
Disabled by default.
mbstd_group_size (int): Group size for minibatch std
before the final conv layer. A value of 0 indicates
not to use minibatch std, and a value of -1 indicates
that the group should be over the entire batch.
This is used for increasing variety of the outputs of
the generator. Default value is 4.
NOTE: Scores for the same data may vary depending
on batch size when using a value of -1.
NOTE: If a value > 0 is given, every input batch
must have a size evenly divisible by this value.
dense_hidden (int, optional): The number of hidden features
of the first dense layer. By default, this is the same as
the number of channels in the final conv layer."""
__doc__ += _BaseAdverserialModel.__doc__
def __init__(self, **kwargs):
super(Discriminator, self).__init__()
self._update_default_kwargs(
label_size=0,
mbstd_group_size=4,
dense_hidden=None,
resnet=True,
skip=False
)
self._update_kwargs(**kwargs)
conv_block_kwargs = dict(
resnet=self.resnet,
down=True,
num_layers=self.conv_block_size,
filter=self.conv_filter,
activation=self.activation,
mode=self.conv_resample_mode,
fused=self.fused_resample,
kernel_size=self.kernel_size,
pad_mode=self.conv_pad_mode,
pad_constant=self.conv_pad_constant,
filter_pad_mode=self.filter_pad_mode,
filter_pad_constant=self.filter_pad_constant,
pad_once=self.pad_once,
noise=False,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale,
gain=1,
dim=self.dim,
eps=self.eps
)
self.conv_blocks = nn.ModuleList()
# All but the last of the convolutional blocks look the same
# except for number of input and output channels
for i in range(len(self.channels) - 1):
self.conv_blocks.append(
modules.DiscriminatorConvBlock(
in_channels=self.channels[i],
out_channels=self.channels[i + 1],
**conv_block_kwargs
)
)
# The final convolutional layer is slightly different
# from the previous convolutional blocks but can still
# be represented as a convolutional block if we change
# some of its arguments and optionally add a minibatch
# std layer before it.
final_conv_block = []
if self.mbstd_group_size:
final_conv_block.append(
modules.MinibatchStd(
group_size=self.mbstd_group_size,
eps=self.eps
)
)
final_conv_block.append(
modules.DiscriminatorConvBlock(
**{
**conv_block_kwargs,
'in_channels': self.channels[-1] + (1 if self.mbstd_group_size else 0),
'out_channels': self.channels[-1],
'resnet': False,
'down': False,
'num_layers': 1
},
)
)
self.conv_blocks.append(nn.Sequential(*final_conv_block))
# If not using the skip architecture, only one
# layer will project the data into feature maps.
# This would be performed only for the input data at
# the first block.
# If using the skip architecture, every block will
# have its own projection layer instead.
self.from_data_layers = nn.ModuleList()
for i in range(len(self.channels)):
from_data = None
if i == 0 or self.skip:
from_data = modules.BiasActivationWrapper(
layer=modules.ConvLayer(
**{
**conv_block_kwargs,
'in_channels': self.data_channels,
'out_channels': self.channels[i],
'modulate': False,
'demodulate': False,
'kernel_size': 1
}
),
**{
**conv_block_kwargs,
'features': self.channels[i],
'use_bias': True,
'activation': self.activation,
'bias_init': 0
}
)
self.from_data_layers.append(from_data)
# When the skip architecture is used we need to
# downsample the data input so that it has the same
# size as the feature maps of each block so that it
# can be projected and added to these feature maps.
self.downsample = None
if self.skip:
self.downsample = modules.Downsample(
mode=self.skip_resample_mode,
filter=self.skip_filter,
filter_pad_mode=self.filter_pad_mode,
filter_pad_constant=self.filter_pad_constant,
gain=1,
dim=self.dim
)
# The final layers are two dense layers that maps
# the features into score logits. If labels are
# used, we instead output one score for each possible
# class of the labels and then return the score for the
# labeled class.
dense_layers = []
in_features = self.channels[-1] * np.prod(self.base_shape)
out_features = self.dense_hidden or self.channels[-1]
activation = self.activation
for _ in range(2):
dense_layers.append(
modules.BiasActivationWrapper(
layer=modules.DenseLayer(
in_features=in_features,
out_features=out_features,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale,
gain=1,
),
features=out_features,
activation=activation,
use_bias=True,
bias_init=0,
lr_mul=self.lr_mul,
weight_scale=self.weight_scale
)
)
in_features = out_features
out_features = max(1, self.label_size)
activation = 'linear'
self.dense = nn.Sequential(*dense_layers)
def forward(self, input, labels=None):
"""
Takes some data and optionally its labels and
produces one score logit per data input.
Arguments:
input (torch.Tensor)
labels (torch.Tensor, list, optional)
Returns:
score_logits (torch.Tensor)
"""
# Declare our feature activations variable.
x = None
# Declare our data (input) variable
y = input
for i, (block, from_data) in enumerate(zip(self.conv_blocks, self.from_data_layers)):
# Combine the data input of this block with any previous
# block output if using 'skip' architecture, else only
# perform this operation as a way to create inputs for
# the first block.
if from_data is not None:
t = from_data(y)
x = t if x is None else x + t
x = block(input=x)
# Downsample the data input of this block to fit
# the feature size of the output of this block so that they can
# be added together. Only performed for 'skip' architectures.
if self.downsample is not None and i != len(self.conv_blocks) - 1:
y = self.downsample(y)
# Calculate scores
x = x.view(x.size(0), -1)
x = self.dense(x)
if labels is not None:
# Use advanced indexing to fetch only the score of the
# class labels.
x = x[torch.arange(x.size(0)), labels].unsqueeze(-1)
return x