""" Code adapted from https://github.com/richzhang/PerceptualSimilarity Original License: Copyright (c) 2018, Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import torch from torch import nn import torchvision class LPIPS_VGG16(nn.Module): _FEATURE_IDX = [0, 4, 9, 16, 23, 30] _LINEAR_WEIGHTS_URL = 'https://github.com/richzhang/PerceptualSimilarity' + \ '/blob/master/lpips/weights/v0.1/vgg.pth?raw=true' def __init__(self, pixel_min=-1, pixel_max=1): super(LPIPS_VGG16, self).__init__() features = torchvision.models.vgg16(pretrained=True).features self.slices = nn.ModuleList() linear_weights = torch.utils.model_zoo.load_url(self._LINEAR_WEIGHTS_URL) for i in range(1, len(self._FEATURE_IDX)): idx_range = range(self._FEATURE_IDX[i - 1], self._FEATURE_IDX[i]) self.slices.append(nn.Sequential(*[features[j] for j in idx_range])) self.linear_layers = nn.ModuleList() for weight in torch.utils.model_zoo.load_url(self._LINEAR_WEIGHTS_URL).values(): weight = weight.view(1, -1) linear = nn.Linear(weight.size(1), 1, bias=False) linear.weight.data.copy_(weight) self.linear_layers.append(linear) self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188]).view(1, -1, 1, 1)) self.register_buffer('scale', torch.Tensor([.458,.448,.450]).view(1, -1, 1, 1)) self.pixel_min = pixel_min self.pixel_max = pixel_max self.requires_grad_(False) self.eval() def _scale(self, x): if self.pixel_min != -1 or self.pixel_max != 1: x = (2*x - self.pixel_min - self.pixel_max) \ / (self.pixel_max - self.pixel_min) return (x - self.shift) / self.scale @staticmethod def _normalize_tensor(feature_maps, eps=1e-8): rnorm = torch.rsqrt(torch.sum(feature_maps ** 2, dim=1, keepdim=True) + eps) return feature_maps * rnorm def forward(self, x0, x1, eps=1e-8): x0, x1 = self._scale(x0), self._scale(x1) dist = 0 for slice, linear in zip(self.slices, self.linear_layers): x0, x1 = slice(x0), slice(x1) _x0, _x1 = self._normalize_tensor(x0, eps), self._normalize_tensor(x1, eps) dist += linear(torch.mean((_x0 - _x1) ** 2, dim=[-1, -2])) return dist.view(-1)