File size: 5,982 Bytes
cfb192c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import torch
import time
import librosa
import soundfile
import nemo.collections.asr as nemo_asr
import tempfile
import os
import uuid

from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch

# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

# ---------------------------------------------
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
# This should allow you to save your results to your own Dataset hosted on HF. ---
#DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
#DATASET_REPO_ID = "awacke1/Carddata.csv"
#DATA_FILENAME = "Carddata.csv"
#DATA_FILE = os.path.join("data", DATA_FILENAME)
#HF_TOKEN = os.environ.get("HF_TOKEN")
#SCRIPT = """

#<script>
#if (!window.hasBeenRun) {
#    window.hasBeenRun = true;
#    console.log("should only happen once");
#    document.querySelector("button.submit").click();
#}
#</script>
#"""

#try:
#    hf_hub_download(
#        repo_id=DATASET_REPO_ID,
#        filename=DATA_FILENAME,
#        cache_dir=DATA_DIRNAME,
#        force_filename=DATA_FILENAME
#    )
#except:
#    print("file not found")
#repo = Repository(
#    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
#)
           
#def store_message(name: str, message: str):
#    if name and message:
#        with open(DATA_FILE, "a") as csvfile:
#            writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
#            writer.writerow(
#                {"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
#            )
#        # uncomment line below to begin saving - 
#        commit_url = repo.push_to_hub()
#    return ""            

#iface = gr.Interface(
#    store_message,
#    [
#        inputs.Textbox(placeholder="Your name"),
#        inputs.Textbox(placeholder="Your message", lines=2),
#    ],
#    "html",
#    css="""
#    .message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
#    """,
#    title="Reading/writing to a HuggingFace dataset repo from Spaces",
#    description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.",
#    article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
#)


# main -------------------------
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)

def take_last_tokens(inputs, note_history, history):
    """Filter the last 128 tokens"""
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history

def add_note_to_history(note, note_history):
    """Add a note to the historical information"""
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]


def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))
#    store_message(message, response) # Save to dataset - uncomment if you uncomment above to save inputs and outputs to your dataset
    return history, history
    

SAMPLE_RATE = 16000
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
model.change_decoding_strategy(None)
model.eval()

def process_audio_file(file):
    data, sr = librosa.load(file)
    if sr != SAMPLE_RATE:
        data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
    # monochannel
    data = librosa.to_mono(data)
    return data


def transcribe(audio, state = ""):   
    if state is None:
        state = ""
    audio_data = process_audio_file(audio)
    with tempfile.TemporaryDirectory() as tmpdir:
        audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
        soundfile.write(audio_path, audio_data, SAMPLE_RATE)
        transcriptions = model.transcribe([audio_path])
        if type(transcriptions) == tuple and len(transcriptions) == 2:
            transcriptions = transcriptions[0]
        transcriptions = transcriptions[0]
#    store_message(transcriptions, state) # Save to dataset - uncomment to store into a dataset - hint you will need your HF_TOKEN
    state = state + transcriptions + " "
    return state, state

iface = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(source="microphone", type='filepath', streaming=True),
        "state",
    ],
    outputs=[
        "textbox",
        "state",
    ],
    layout="horizontal",
    theme="huggingface",
    title="🗣️LiveSpeechRecognition🧠Memory💾",
    description=f"Live Automatic Speech Recognition (ASR) with Memory💾 Dataset.",
    allow_flagging='never',
    live=True,    
#    article=f"Result Output Saved to Memory💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
)
iface.launch()