File size: 8,140 Bytes
93cf757
1e7ab6c
0f79c5b
d446ca4
 
 
42843b6
93cf757
1e7ab6c
d446ca4
0f79c5b
 
93cf757
4674b6c
d446ca4
0f79c5b
 
4674b6c
d446ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f79c5b
 
 
 
df38a50
d619a71
2721e55
df38a50
d446ca4
 
 
 
 
2527d95
0f79c5b
a299dfc
 
 
 
d446ca4
 
a52c38e
2527d95
6df9060
5ce2a93
973537b
 
6df9060
2527d95
93cf757
2527d95
e2efa2c
93cf757
6df9060
93cf757
6df9060
93cf757
 
 
 
 
 
 
 
 
 
 
bd0f589
0f79c5b
e2efa2c
 
 
bd0f589
d446ca4
2527d95
0f79c5b
2527d95
1e7ab6c
 
 
e2efa2c
 
 
e88b7ef
1e7ab6c
 
 
 
3c652e4
1e7ab6c
9240be0
1e7ab6c
9240be0
1e7ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cd35c
1e7ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d446ca4
 
 
 
1e7ab6c
 
 
 
 
 
 
 
 
 
d446ca4
d619a71
1e7ab6c
d619a71
5e58c6e
d446ca4
 
1e7ab6c
ec1b175
bd0f589
1e7ab6c
 
 
 
ec1b175
bd0f589
1e7ab6c
 
 
d446ca4
 
 
1e7ab6c
d446ca4
1e7ab6c
d446ca4
a52c38e
 
 
d446ca4
a52c38e
1e7ab6c
a52c38e
 
 
 
1e7ab6c
 
42843b6
d446ca4
1e7ab6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import math
import tempfile

import gradio
import gradio.inputs
import gradio.outputs
import markdown
import matplotlib.pyplot as plt
import numpy as np
import torch
from df import config
from df.enhance import enhance, init_df, load_audio, save_audio
from df.utils import resample

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, df, _ = init_df()
model = model.to(device=device).eval()


def mix_at_snr(clean, noise, snr, eps=1e-10):
    """Mix clean and noise signal at a given SNR.

    Args:
        clean: 1D Tensor with the clean signal to mix.
        noise: 1D Tensor of shape.
        snr: Signal to noise ratio.

    Returns:
        clean: 1D Tensor with gain changed according to the snr.
        noise: 1D Tensor with the combined noise channels.
        mix: 1D Tensor with added clean and noise signals.

    """
    clean = torch.as_tensor(clean).mean(0, keepdim=True)
    noise = torch.as_tensor(noise).mean(0, keepdim=True)
    if noise.shape[1] < clean.shape[1]:
        noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1]))))
    max_start = int(noise.shape[1] - clean.shape[1])
    start = torch.randint(0, max_start, ()).item()
    print("start:", start, clean.shape)
    noise = noise[:, start : start + clean.shape[1]]
    E_speech = torch.mean(clean.pow(2)) + eps
    E_noise = torch.mean(noise.pow(2))
    K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
    noise = noise / K
    mixture = clean + noise
    print("mixture:", mixture.shape)
    assert torch.isfinite(mixture).all()
    max_m = mixture.abs().max()
    if max_m > 1:
        print(f"Clipping detected during mixing. Reducing gain by {1/max_m}")
        clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m
    return clean, noise, mixture


def mix_and_denoise(speech_rec, speech_upl, noise, snr):
    sr = config("sr", 48000, int, section="df")
    print(speech_rec, speech_upl, noise, snr)
    if noise is None:
        noise = "samples/dkitchen.wav"
    sp_kwargs = {}
    if speech_rec is None or "none" in speech_rec:
        speech_file = "samples/p232_013_clean.wav"
        if speech_upl is not None and "none" not in speech_upl:
            print("using speech_upl")
            speech_file = speech_upl
    else:
        speech_file = speech_rec
        sp_kwargs = {"frame_offset": 4800}
    try:
        speech, meta = load_audio(speech_file, sr, **sp_kwargs)
    except RuntimeError as e:
        print("Could not load audio:", e)
        import os

        print(os.path.getsize(speech_file))
        print(os.path.getmtime(speech_file))
        print(os.path.getctime(speech_file))
        raise e

    print(f"Loaded speech with shape {speech.shape}")
    noise, _ = load_audio(noise, sr)
    if meta.sample_rate != sr:
        # Low pass filter by resampling
        noise = resample(resample(noise, sr, meta.sample_rate), meta.sample_rate, sr)
    print(f"Loaded noise with shape {noise.shape}")
    speech, noise, noisy = mix_at_snr(speech, noise, snr)
    print("Start denoising audio")
    enhanced = enhance(model, df, noisy)
    print("Denoising finished")
    lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
    lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
    enhanced = enhanced * lim
    if meta.sample_rate != sr:
        enhanced = resample(enhanced, sr, meta.sample_rate)
        noisy = resample(noisy, sr, meta.sample_rate)
        sr = meta.sample_rate
    noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
    save_audio(noisy_fn, noisy, sr)
    enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
    save_audio(enhanced_fn, enhanced, sr)
    print("saved audios", noisy_fn, enhanced_fn)
    return (
        noisy_fn,
        spec_figure(noisy, sr=sr),
        enhanced_fn,
        spec_figure(enhanced, sr=sr),
    )


def specshow(
    spec,
    ax=None,
    title=None,
    xlabel=None,
    ylabel=None,
    sr=48000,
    n_fft=None,
    hop=None,
    t=None,
    f=None,
    vmin=-100,
    vmax=0,
    xlim=None,
    ylim=None,
    cmap="inferno",
):
    """Plots a spectrogram of shape [F, T]"""
    spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec
    if ax is not None:
        set_title = ax.set_title
        set_xlabel = ax.set_xlabel
        set_ylabel = ax.set_ylabel
        set_xlim = ax.set_xlim
        set_ylim = ax.set_ylim
    else:
        ax = plt
        set_title = plt.title
        set_xlabel = plt.xlabel
        set_ylabel = plt.ylabel
        set_xlim = plt.xlim
        set_ylim = plt.ylim
    if n_fft is None:
        if spec.shape[0] % 2 == 0:
            n_fft = spec.shape[0] * 2
        else:
            n_fft = (spec.shape[0] - 1) * 2
    hop = hop or n_fft // 4
    if t is None:
        t = np.arange(0, spec_np.shape[-1]) * hop / sr
    if f is None:
        f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000
    im = ax.pcolormesh(
        t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap
    )
    if title is not None:
        set_title(title)
    if xlabel is not None:
        set_xlabel(xlabel)
    if ylabel is not None:
        set_ylabel(ylabel)
    if xlim is not None:
        set_xlim(xlim)
    if ylim is not None:
        set_ylim(ylim)
    return im


def spec_figure(
    audio: torch.Tensor,
    figsize=(15, 5),
    colorbar=False,
    colorbar_format=None,
    figure=None,
    return_im=False,
    labels=True,
    **kwargs,
) -> plt.Figure:
    audio = torch.as_tensor(audio)
    if labels:
        kwargs.setdefault("xlabel", "Time [s]")
        kwargs.setdefault("ylabel", "Frequency [Hz]")
    n_fft = kwargs.setdefault("n_fft", 1024)
    hop = kwargs.setdefault("hop", 512)
    w = torch.hann_window(n_fft, device=audio.device)
    spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False)
    spec = spec.div_(w.pow(2).sum())
    spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10)
    kwargs.setdefault("vmax", max(0.0, spec.max().item()))

    if figure is None:
        figure = plt.figure(figsize=figsize)
        figure.set_tight_layout(True)
    if spec.dim() > 2:
        spec = spec.squeeze(0)
    im = specshow(spec, **kwargs)
    if colorbar:
        ckwargs = {}
        if "ax" in kwargs:
            if colorbar_format is None:
                if (
                    kwargs.get("vmin", None) is not None
                    or kwargs.get("vmax", None) is not None
                ):
                    colorbar_format = "%+2.0f dB"
            ckwargs = {"ax": kwargs["ax"]}
        plt.colorbar(im, format=colorbar_format, **ckwargs)
    if return_im:
        return im
    return figure


inputs = [
    gradio.inputs.Audio(
        source="microphone",
        type="filepath",
        optional=True,
        label="Record your own voice",
    ),
    gradio.inputs.Audio(
        source="upload",
        type="filepath",
        optional=True,
        label="Alternative: Upload speech sample",
    ),
    gradio.inputs.Audio(
        source="upload", type="filepath", optional=True, label="Upload noise sample"
    ),
    gradio.inputs.Slider(minimum=-10, maximum=40, step=5, default=10),  # SNR
]
examples = [
    [
        "none",
        "samples/p232_013_clean.wav",
        "samples/dkitchen.wav",
        10,
    ],
    [
        "none",
        "samples/p232_019_clean.wav",
        "samples/dliving.wav",
        10,
    ],
]
outputs = [
    gradio.outputs.Audio(label="Noisy"),
    gradio.outputs.Image(type="plot"),
    gradio.outputs.Audio(label="Enhanced"),
    gradio.outputs.Image(type="plot"),
]
description = (
    "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
)
iface = gradio.Interface(
    fn=mix_and_denoise,
    title="DeepFilterNet Demo",
    inputs=inputs,
    outputs=outputs,
    examples=examples,
    description=description,
    layout="horizontal",
    allow_flagging="never",
    article=markdown.markdown(open("usage.md").read()),
)
iface.launch(cache_examples=False)