Spaces:
Runtime error
Runtime error
File size: 9,533 Bytes
93cf757 1e7ab6c c8dbfb3 0f79c5b d446ca4 42843b6 93cf757 1e7ab6c d446ca4 e20c50f c8dbfb3 e20c50f 0f79c5b 93cf757 4674b6c d446ca4 e7bb95d 0f79c5b 4674b6c d446ca4 0f79c5b df38a50 4f235e3 4cf88e6 df38a50 d446ca4 4cf88e6 0f79c5b a299dfc 4cf88e6 a299dfc d446ca4 a52c38e c8dbfb3 e7bb95d c8dbfb3 0b334e9 c8dbfb3 6df9060 6b3c03e 4cf88e6 6b3c03e 4cf88e6 4f235e3 e7bb95d 6df9060 c8dbfb3 4f235e3 e20c50f 4cf88e6 e2efa2c e20c50f d446ca4 e20c50f 0f79c5b e20c50f 1e7ab6c e2efa2c e88b7ef 1e7ab6c e20c50f 1e7ab6c 9240be0 1e7ab6c 9240be0 1e7ab6c 30cd35c 1e7ab6c e20c50f 1e7ab6c d446ca4 1e7ab6c 0b334e9 1e7ab6c 0b334e9 1e7ab6c d446ca4 d619a71 1e7ab6c d619a71 5e58c6e d446ca4 1e7ab6c ec1b175 bd0f589 1e7ab6c ec1b175 bd0f589 1e7ab6c d446ca4 1e7ab6c d446ca4 1e7ab6c d446ca4 e20c50f d446ca4 a52c38e 1e7ab6c a52c38e 1e7ab6c 42843b6 d446ca4 4cf88e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import math
import tempfile
from typing import Optional, Tuple, Union
import gradio
import gradio.inputs
import gradio.outputs
import markdown
import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from torch import Tensor
from torchaudio.backend.common import AudioMetaData
from df import config
from df.enhance import enhance, init_df, load_audio, save_audio
from df.utils import resample
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, df, _ = init_df(config_allow_defaults=True)
model = model.to(device=device).eval()
def mix_at_snr(clean, noise, snr, eps=1e-10):
"""Mix clean and noise signal at a given SNR.
Args:
clean: 1D Tensor with the clean signal to mix.
noise: 1D Tensor of shape.
snr: Signal to noise ratio.
Returns:
clean: 1D Tensor with gain changed according to the snr.
noise: 1D Tensor with the combined noise channels.
mix: 1D Tensor with added clean and noise signals.
"""
clean = torch.as_tensor(clean).mean(0, keepdim=True)
noise = torch.as_tensor(noise).mean(0, keepdim=True)
if noise.shape[1] < clean.shape[1]:
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1]))))
max_start = int(noise.shape[1] - clean.shape[1])
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0
logger.debug(f"start: {start}, {clean.shape}")
noise = noise[:, start : start + clean.shape[1]]
E_speech = torch.mean(clean.pow(2)) + eps
E_noise = torch.mean(noise.pow(2))
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
noise = noise / K
mixture = clean + noise
logger.debug("mixture: {mixture.shape}")
assert torch.isfinite(mixture).all()
max_m = mixture.abs().max()
if max_m > 1:
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}")
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m
return clean, noise, mixture
def load_audio_gradio(
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int
) -> Optional[Tuple[Tensor, AudioMetaData]]:
if audio_or_file is None:
return None
if isinstance(audio_or_file, str):
if audio_or_file.lower() == "none":
return None
# First try default format
audio, meta = load_audio(audio_or_file, sr)
else:
meta = AudioMetaData(-1, -1, -1, -1, "")
assert isinstance(audio_or_file, (tuple, list))
meta.sample_rate, audio_np = audio_or_file
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not.
audio_np = audio_np.reshape(audio_np.shape[0], -1).T
if audio_np.dtype == np.int16:
audio_np = (audio_np / (1 << 15)).astype(np.float32)
elif audio_np.dtype == np.int32:
audio_np = (audio_np / (1 << 31)).astype(np.float32)
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr)
return audio, meta
def mix_and_denoise(
speech_rec: Union[str, Tuple[int, np.ndarray]], speech_upl: str, noise_fn: str, snr: int
):
sr = config("sr", 48000, int, section="df")
logger.info(
f"Got parameters speech_rec: {speech_rec}, speech_upl: {speech_upl}, noise: {noise_fn}, snr: {snr}"
)
if noise_fn is None:
noise_fn = "samples/dkitchen.wav"
meta = AudioMetaData(-1, -1, -1, -1, "")
max_s = 10 # limit to 10 seconds
if speech_rec is None and speech_upl is None:
speech, meta = load_audio("samples/p232_013_clean.wav", sr)
elif speech_upl is not None:
speech, meta = load_audio(speech_upl, sr)
else:
tmp = load_audio_gradio(speech_rec, sr)
assert tmp is not None
speech, meta = tmp
if speech.dim() > 1 and speech.shape[0] > 1:
assert (
speech.shape[1] > speech.shape[0]
), f"Expecting channels first, but got {speech.shape}"
speech = speech.mean(dim=0, keepdim=True)
speech = speech[..., : max_s * sr]
logger.info(f"Loaded speech with shape {speech.shape}")
noise, _ = load_audio(noise_fn, sr) # type: ignore
if meta.sample_rate != sr:
# Low pass filter by resampling
noise = resample(resample(noise, sr, meta.sample_rate), meta.sample_rate, sr)
logger.info(f"Loaded noise with shape {noise.shape}")
speech, noise, noisy = mix_at_snr(speech, noise, snr)
logger.info("Start denoising audio")
enhanced = enhance(model, df, noisy)
logger.info("Denoising finished")
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
enhanced = enhanced * lim
if meta.sample_rate != sr:
enhanced = resample(enhanced, sr, meta.sample_rate)
noisy = resample(noisy, sr, meta.sample_rate)
sr = meta.sample_rate
noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
save_audio(noisy_fn, noisy, sr)
enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
save_audio(enhanced_fn, enhanced, sr)
logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
return (
noisy_fn,
spec_figure(noisy, sr=sr),
enhanced_fn,
spec_figure(enhanced, sr=sr),
)
def specshow(
spec,
ax=None,
title=None,
xlabel=None,
ylabel=None,
sr=48000,
n_fft=None,
hop=None,
t=None,
f=None,
vmin=-100,
vmax=0,
xlim=None,
ylim=None,
cmap="inferno",
):
"""Plots a spectrogram of shape [F, T]"""
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec
if ax is not None:
set_title = ax.set_title
set_xlabel = ax.set_xlabel
set_ylabel = ax.set_ylabel
set_xlim = ax.set_xlim
set_ylim = ax.set_ylim
else:
ax = plt
set_title = plt.title
set_xlabel = plt.xlabel
set_ylabel = plt.ylabel
set_xlim = plt.xlim
set_ylim = plt.ylim
if n_fft is None:
if spec.shape[0] % 2 == 0:
n_fft = spec.shape[0] * 2
else:
n_fft = (spec.shape[0] - 1) * 2
hop = hop or n_fft // 4
if t is None:
t = np.arange(0, spec_np.shape[-1]) * hop / sr
if f is None:
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000
im = ax.pcolormesh(
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap
)
if title is not None:
set_title(title)
if xlabel is not None:
set_xlabel(xlabel)
if ylabel is not None:
set_ylabel(ylabel)
if xlim is not None:
set_xlim(xlim)
if ylim is not None:
set_ylim(ylim)
return im
def spec_figure(
audio: torch.Tensor,
figsize=(15, 5),
colorbar=False,
colorbar_format=None,
figure=None,
return_im=False,
labels=True,
**kwargs,
) -> plt.Figure:
audio = torch.as_tensor(audio)
if labels:
kwargs.setdefault("xlabel", "Time [s]")
kwargs.setdefault("ylabel", "Frequency [Hz]")
n_fft = kwargs.setdefault("n_fft", 1024)
hop = kwargs.setdefault("hop", 512)
w = torch.hann_window(n_fft, device=audio.device)
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False)
spec = spec.div_(w.pow(2).sum())
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10)
kwargs.setdefault("vmax", max(0.0, spec.max().item()))
if figure is None:
figure = plt.figure(figsize=figsize)
figure.set_tight_layout(True)
if spec.dim() > 2:
spec = spec.squeeze(0)
im = specshow(spec, **kwargs)
if colorbar:
ckwargs = {}
if "ax" in kwargs:
if colorbar_format is None:
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None:
colorbar_format = "%+2.0f dB"
ckwargs = {"ax": kwargs["ax"]}
plt.colorbar(im, format=colorbar_format, **ckwargs)
if return_im:
return im
return figure
inputs = [
gradio.inputs.Audio(
source="microphone",
type="numpy",
optional=True,
label="Record your own voice",
),
gradio.inputs.Audio(
source="upload",
type="filepath",
optional=True,
label="Alternative: Upload speech sample",
),
gradio.inputs.Audio(
source="upload", type="filepath", optional=True, label="Upload noise sample"
),
gradio.inputs.Slider(minimum=-10, maximum=40, step=5, default=10), # SNR
]
examples = [
[
"none",
"samples/p232_013_clean.wav",
"samples/dkitchen.wav",
10,
],
[
"none",
"samples/p232_019_clean.wav",
"samples/dliving.wav",
10,
],
]
outputs = [
gradio.outputs.Audio(label="Noisy"),
gradio.outputs.Image(type="plot"),
gradio.outputs.Audio(label="Enhanced"),
gradio.outputs.Image(type="plot"),
]
description = "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
iface = gradio.Interface(
fn=mix_and_denoise,
title="DeepFilterNet Demo",
inputs=inputs,
outputs=outputs,
examples=examples,
description=description,
layout="horizontal",
allow_flagging="never",
article=markdown.markdown(open("usage.md").read()),
)
iface.launch(cache_examples=False, debug=True)
|