DeepFilterNet / app.py
Hendrik Schroeter
wip
d446ca4 unverified
raw
history blame
1.85 kB
import gradio
import gradio.inputs
import gradio.outputs
import torch
from df.enhance import enhance, init_df
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def mix_at_snr(clean, noise, snr, eps=1e-10):
"""Mix clean and noise signal at a given SNR.
Args:
clean: 1D Tensor with the clean signal to mix.
noise: 1D Tensor of shape.
snr: Signal to noise ratio.
Returns:
clean: 1D Tensor with gain changed according to the snr.
noise: 1D Tensor with the combined noise channels.
mix: 1D Tensor with added clean and noise signals.
"""
clean = torch.as_tensor(clean)
noise = torch.as_tensor(noise)
E_speech = torch.mean(clean.pow(2)) + eps
E_noise = torch.mean(noise.pow(2))
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
noise = noise / K
mixture = clean + noise
assert torch.isfinite(mixture)
return clean, noise, mixture
def mix_and_denoise(speech, noise, snr):
model, df, _ = init_df()
speech, noise, noisy = mix_at_snr(speech, noise, snr)
enhanced = enhance(model.to(device=device).eval(), df, noisy)
return speech, noisy, enhanced
inputs = [
gradio.inputs.Audio(
source="microphone", type="filepath", optional=True, label="Speech"
),
gradio.inputs.Audio(
source="microphone", type="filepath", optional=True, label="Noise"
),
gradio.inputs.Slider(minimum=-10, maximum=40, step=5, default=10),
]
examples = [
[],
["samples/noise_freesound_2530.wav", "samples/noise_freesound_573577.wav"],
]
outputs = [
gradio.outputs.Audio(label="Clean"),
gradio.outputs.Audio(label="Noisy"),
gradio.outputs.Audio(label="Enhanced"),
]
iface = gradio.Interface(
fn=mix_and_denoise, inputs=inputs, outputs=outputs, examples=examples
)
iface.launch()