Spaces:
Running
Running
import math | |
import tempfile | |
from typing import Optional, Tuple, Union | |
import gradio as gr | |
import markdown | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from torch import Tensor | |
from torchaudio.backend.common import AudioMetaData | |
from df import config | |
from df.enhance import enhance, init_df, load_audio, save_audio | |
from df.io import resample | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True) | |
model = model.to(device=device).eval() | |
fig_noisy: plt.Figure | |
fig_enh: plt.Figure | |
ax_noisy: plt.Axes | |
ax_enh: plt.Axes | |
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4)) | |
fig_noisy.set_tight_layout(True) | |
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4)) | |
fig_enh.set_tight_layout(True) | |
NOISES = { | |
"None": None, | |
"Kitchen": "samples/dkitchen.wav", | |
"Living Room": "samples/dliving.wav", | |
"River": "samples/nriver.wav", | |
"Cafe": "samples/scafe.wav", | |
} | |
def mix_at_snr(clean, noise, snr, eps=1e-10): | |
"""Mix clean and noise signal at a given SNR. | |
Args: | |
clean: 1D Tensor with the clean signal to mix. | |
noise: 1D Tensor of shape. | |
snr: Signal to noise ratio. | |
Returns: | |
clean: 1D Tensor with gain changed according to the snr. | |
noise: 1D Tensor with the combined noise channels. | |
mix: 1D Tensor with added clean and noise signals. | |
""" | |
clean = torch.as_tensor(clean).mean(0, keepdim=True) | |
noise = torch.as_tensor(noise).mean(0, keepdim=True) | |
if noise.shape[1] < clean.shape[1]: | |
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1])))) | |
max_start = int(noise.shape[1] - clean.shape[1]) | |
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0 | |
logger.debug(f"start: {start}, {clean.shape}") | |
noise = noise[:, start : start + clean.shape[1]] | |
E_speech = torch.mean(clean.pow(2)) + eps | |
E_noise = torch.mean(noise.pow(2)) | |
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps) | |
noise = noise / K | |
mixture = clean + noise | |
logger.debug("mixture: {mixture.shape}") | |
assert torch.isfinite(mixture).all() | |
max_m = mixture.abs().max() | |
if max_m > 1: | |
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}") | |
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m | |
return clean, noise, mixture | |
def load_audio_gradio( | |
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int | |
) -> Optional[Tuple[Tensor, AudioMetaData]]: | |
if audio_or_file is None: | |
return None | |
if isinstance(audio_or_file, str): | |
if audio_or_file.lower() == "none": | |
return None | |
# First try default format | |
audio, meta = load_audio(audio_or_file, sr) | |
else: | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
assert isinstance(audio_or_file, (tuple, list)) | |
meta.sample_rate, audio_np = audio_or_file | |
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not. | |
audio_np = audio_np.reshape(audio_np.shape[0], -1).T | |
if audio_np.dtype == np.int16: | |
audio_np = (audio_np / (1 << 15)).astype(np.float32) | |
elif audio_np.dtype == np.int32: | |
audio_np = (audio_np / (1 << 31)).astype(np.float32) | |
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr) | |
return audio, meta | |
def demo_fn(speech_upl: str, noise_type: str, snr: int, mic_input: str): | |
if (mic_input): | |
speech_upl = mic_input | |
sr = config("sr", 48000, int, section="df") | |
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}") | |
snr = int(snr) | |
noise_fn = NOISES[noise_type] | |
meta = AudioMetaData(-1, -1, -1, -1, "") | |
max_s = 10 # limit to 10 seconds | |
if speech_upl is not None: | |
sample, meta = load_audio(speech_upl, sr) | |
max_len = max_s * sr | |
if sample.shape[-1] > max_len: | |
start = torch.randint(0, sample.shape[-1] - max_len, ()).item() | |
sample = sample[..., start : start + max_len] | |
else: | |
sample, meta = load_audio("samples/p232_013_clean.wav", sr) | |
sample = sample[..., : max_s * sr] | |
if sample.dim() > 1 and sample.shape[0] > 1: | |
assert ( | |
sample.shape[1] > sample.shape[0] | |
), f"Expecting channels first, but got {sample.shape}" | |
sample = sample.mean(dim=0, keepdim=True) | |
logger.info(f"Loaded sample with shape {sample.shape}") | |
if noise_fn is not None: | |
noise, _ = load_audio(noise_fn, sr) # type: ignore | |
logger.info(f"Loaded noise with shape {noise.shape}") | |
_, _, sample = mix_at_snr(sample, noise, snr) | |
logger.info("Start denoising audio") | |
enhanced = enhance(model, df, sample) | |
logger.info("Denoising finished") | |
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0) | |
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1) | |
enhanced = enhanced * lim | |
if meta.sample_rate != sr: | |
enhanced = resample(enhanced, sr, meta.sample_rate) | |
sample = resample(sample, sr, meta.sample_rate) | |
sr = meta.sample_rate | |
noisy_wav = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name | |
save_audio(noisy_wav, sample, sr) | |
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name | |
save_audio(enhanced_wav, enhanced, sr) | |
logger.info(f"saved audios: {noisy_wav}, {enhanced_wav}") | |
ax_noisy.clear() | |
ax_enh.clear() | |
noisy_im = spec_im(sample, sr=sr, figure=fig_noisy, ax=ax_noisy) | |
enh_im = spec_im(enhanced, sr=sr, figure=fig_enh, ax=ax_enh) | |
# noisy_wav = gr.make_waveform(noisy_fn, bar_count=200) | |
# enh_wav = gr.make_waveform(enhanced_fn, bar_count=200) | |
return noisy_wav, noisy_im, enhanced_wav, enh_im | |
def specshow( | |
spec, | |
ax=None, | |
title=None, | |
xlabel=None, | |
ylabel=None, | |
sr=48000, | |
n_fft=None, | |
hop=None, | |
t=None, | |
f=None, | |
vmin=-100, | |
vmax=0, | |
xlim=None, | |
ylim=None, | |
cmap="inferno", | |
): | |
"""Plots a spectrogram of shape [F, T]""" | |
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec | |
if ax is not None: | |
set_title = ax.set_title | |
set_xlabel = ax.set_xlabel | |
set_ylabel = ax.set_ylabel | |
set_xlim = ax.set_xlim | |
set_ylim = ax.set_ylim | |
else: | |
ax = plt | |
set_title = plt.title | |
set_xlabel = plt.xlabel | |
set_ylabel = plt.ylabel | |
set_xlim = plt.xlim | |
set_ylim = plt.ylim | |
if n_fft is None: | |
if spec.shape[0] % 2 == 0: | |
n_fft = spec.shape[0] * 2 | |
else: | |
n_fft = (spec.shape[0] - 1) * 2 | |
hop = hop or n_fft // 4 | |
if t is None: | |
t = np.arange(0, spec_np.shape[-1]) * hop / sr | |
if f is None: | |
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000 | |
im = ax.pcolormesh( | |
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap | |
) | |
if title is not None: | |
set_title(title) | |
if xlabel is not None: | |
set_xlabel(xlabel) | |
if ylabel is not None: | |
set_ylabel(ylabel) | |
if xlim is not None: | |
set_xlim(xlim) | |
if ylim is not None: | |
set_ylim(ylim) | |
return im | |
def spec_im( | |
audio: torch.Tensor, | |
figsize=(15, 5), | |
colorbar=False, | |
colorbar_format=None, | |
figure=None, | |
labels=True, | |
**kwargs, | |
) -> Image: | |
audio = torch.as_tensor(audio) | |
if labels: | |
kwargs.setdefault("xlabel", "Time [s]") | |
kwargs.setdefault("ylabel", "Frequency [Hz]") | |
n_fft = kwargs.setdefault("n_fft", 1024) | |
hop = kwargs.setdefault("hop", 512) | |
w = torch.hann_window(n_fft, device=audio.device) | |
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False) | |
spec = spec.div_(w.pow(2).sum()) | |
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10) | |
kwargs.setdefault("vmax", max(0.0, spec.max().item())) | |
if figure is None: | |
figure = plt.figure(figsize=figsize) | |
figure.set_tight_layout(True) | |
if spec.dim() > 2: | |
spec = spec.squeeze(0) | |
im = specshow(spec, **kwargs) | |
if colorbar: | |
ckwargs = {} | |
if "ax" in kwargs: | |
if colorbar_format is None: | |
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None: | |
colorbar_format = "%+2.0f dB" | |
ckwargs = {"ax": kwargs["ax"]} | |
plt.colorbar(im, format=colorbar_format, **ckwargs) | |
figure.canvas.draw() | |
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb()) | |
def toggle(choice): | |
if choice == "mic": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
else: | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## DeepFilterNet2 Demo") | |
gr.Markdown("This demo denoises audio files using DeepFilterNet. Try it with your own voice!") | |
with gr.Row(): | |
with gr.Column(): | |
radio = gr.Radio(["mic", "file"], value="file", | |
label="How would you like to upload your audio?") | |
mic_input = gr.Mic(label="Input", type="filepath", visible=False) | |
audio_file = gr.Audio( | |
type="filepath", label="Input", visible=True) | |
inputs = [ | |
audio_file, | |
gr.Dropdown( | |
label="Add background noise", | |
choices=list(NOISES.keys()), | |
value="None", | |
), | |
gr.Dropdown( | |
label="Noise Level (SNR)", | |
choices=["-5", "0", "10", "20"], | |
value="10", | |
), | |
mic_input | |
] | |
btn = gr.Button("Generate") | |
with gr.Column(): | |
outputs = [ | |
# gr.Video(type="filepath", label="Noisy audio"), | |
gr.Audio(type="filepath", label="Noisy audio"), | |
gr.Image(label="Noisy spectrogram"), | |
# gr.Video(type="filepath", label="Enhanced audio"), | |
gr.Audio(type="filepath", label="Enhanced audio"), | |
gr.Image(label="Enhanced spectrogram"), | |
] | |
btn.click(fn=demo_fn, inputs=inputs, outputs=outputs) | |
radio.change(toggle, radio, [mic_input, audio_file]) | |
gr.Examples([ | |
["./samples/p232_013_clean.wav", "Kitchen", "10"], | |
["./samples/p232_013_clean.wav", "Cafe", "10"], | |
["./samples/p232_019_clean.wav", "Cafe", "10"], | |
["./samples/p232_019_clean.wav", "River", "10"]], | |
fn=demo_fn, inputs=inputs, outputs=outputs, cache_examples=True), | |
gr.Markdown(open("usage.md").read()) | |
demo.launch(enable_queue=True) | |