Spaces:
Running
Running
Hendrik Schroeter
commited on
Commit
•
7cbdca2
1
Parent(s):
480d487
Add Demo
Browse files- .flake8 +17 -0
- .gitignore +144 -0
- README.md +3 -4
- app.py +279 -0
- packages.txt +1 -0
- pyproject.toml +10 -0
- requirements.txt +6 -0
- usage.md +8 -0
.flake8
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
ignore = E203, E266, E501, W503
|
3 |
+
max-line-length = 100
|
4 |
+
import-order-style = google
|
5 |
+
application-import-names = flake8
|
6 |
+
select = B,C,E,F,W,T4,B9
|
7 |
+
exclude =
|
8 |
+
.tox,
|
9 |
+
.git,
|
10 |
+
__pycache__,
|
11 |
+
docs,
|
12 |
+
sbatch,
|
13 |
+
.venv,
|
14 |
+
*.pyc,
|
15 |
+
*.egg-info,
|
16 |
+
.cache,
|
17 |
+
.eggs
|
.gitignore
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Own stuff
|
2 |
+
*.wav
|
3 |
+
*.png
|
4 |
+
*.pdf
|
5 |
+
out/
|
6 |
+
export/
|
7 |
+
DeepFilterNet/poetry.lock
|
8 |
+
|
9 |
+
### Rust gitignore ###
|
10 |
+
|
11 |
+
# Generated by Cargo
|
12 |
+
# will have compiled files and executables
|
13 |
+
debug/
|
14 |
+
target/
|
15 |
+
|
16 |
+
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
|
17 |
+
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
18 |
+
Cargo.lock
|
19 |
+
|
20 |
+
# These are backup files generated by rustfmt
|
21 |
+
**/*.rs.bk
|
22 |
+
|
23 |
+
### Python gitignore ###
|
24 |
+
|
25 |
+
# Byte-compiled / optimized / DLL files
|
26 |
+
__pycache__/
|
27 |
+
*.py[cod]
|
28 |
+
*$py.class
|
29 |
+
|
30 |
+
# C extensions
|
31 |
+
*.so
|
32 |
+
|
33 |
+
# Distribution / packaging
|
34 |
+
.Python
|
35 |
+
build/
|
36 |
+
develop-eggs/
|
37 |
+
dist/
|
38 |
+
downloads/
|
39 |
+
eggs/
|
40 |
+
.eggs/
|
41 |
+
lib/
|
42 |
+
lib64/
|
43 |
+
parts/
|
44 |
+
sdist/
|
45 |
+
var/
|
46 |
+
wheels/
|
47 |
+
pip-wheel-metadata/
|
48 |
+
share/python-wheels/
|
49 |
+
*.egg-info/
|
50 |
+
.installed.cfg
|
51 |
+
*.egg
|
52 |
+
MANIFEST
|
53 |
+
|
54 |
+
# PyInstaller
|
55 |
+
# Usually these files are written by a python script from a template
|
56 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
57 |
+
*.manifest
|
58 |
+
*.spec
|
59 |
+
|
60 |
+
# Installer logs
|
61 |
+
pip-log.txt
|
62 |
+
pip-delete-this-directory.txt
|
63 |
+
|
64 |
+
# Unit test / coverage reports
|
65 |
+
typings
|
66 |
+
htmlcov/
|
67 |
+
.tox/
|
68 |
+
.nox/
|
69 |
+
.coverage
|
70 |
+
.coverage.*
|
71 |
+
.cache
|
72 |
+
nosetests.xml
|
73 |
+
coverage.xml
|
74 |
+
*.cover
|
75 |
+
.hypothesis/
|
76 |
+
.pytest_cache/
|
77 |
+
|
78 |
+
# Translations
|
79 |
+
*.mo
|
80 |
+
*.pot
|
81 |
+
|
82 |
+
# Django stuff:
|
83 |
+
*.log
|
84 |
+
local_settings.py
|
85 |
+
db.sqlite3
|
86 |
+
|
87 |
+
# Flask stuff:
|
88 |
+
instance/
|
89 |
+
.webassets-cache
|
90 |
+
|
91 |
+
# Scrapy stuff:
|
92 |
+
.scrapy
|
93 |
+
|
94 |
+
# Sphinx documentation
|
95 |
+
docs/_build/
|
96 |
+
|
97 |
+
# PyBuilder
|
98 |
+
target/
|
99 |
+
|
100 |
+
# Jupyter Notebook
|
101 |
+
.ipynb_checkpoints
|
102 |
+
|
103 |
+
# IPython
|
104 |
+
profile_default/
|
105 |
+
ipython_config.py
|
106 |
+
|
107 |
+
# pyenv
|
108 |
+
.python-version
|
109 |
+
|
110 |
+
# celery beat schedule file
|
111 |
+
celerybeat-schedule
|
112 |
+
|
113 |
+
# SageMath parsed files
|
114 |
+
*.sage.py
|
115 |
+
|
116 |
+
# Environments
|
117 |
+
.env
|
118 |
+
.venv
|
119 |
+
env/
|
120 |
+
venv/
|
121 |
+
ENV/
|
122 |
+
env.bak/
|
123 |
+
venv.bak/
|
124 |
+
|
125 |
+
# Spyder project settings
|
126 |
+
.spyderproject
|
127 |
+
.spyproject
|
128 |
+
|
129 |
+
# Rope project settings
|
130 |
+
.ropeproject
|
131 |
+
|
132 |
+
# mkdocs documentation
|
133 |
+
/site
|
134 |
+
|
135 |
+
# mypy
|
136 |
+
.mypy_cache/
|
137 |
+
.dmypy.json
|
138 |
+
dmypy.json
|
139 |
+
|
140 |
+
# Pyre type checker
|
141 |
+
.pyre/
|
142 |
+
|
143 |
+
# IDE
|
144 |
+
.idea
|
README.md
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 2.9.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: DeepFilterNet
|
3 |
+
emoji: 💩
|
4 |
colorFrom: gray
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import tempfile
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import gradio
|
6 |
+
import gradio.inputs
|
7 |
+
import gradio.outputs
|
8 |
+
import markdown
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from loguru import logger
|
13 |
+
from torch import Tensor
|
14 |
+
from torchaudio.backend.common import AudioMetaData
|
15 |
+
|
16 |
+
from df import config
|
17 |
+
from df.enhance import enhance, init_df, load_audio, save_audio
|
18 |
+
from df.utils import resample
|
19 |
+
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
model, df, _ = init_df(config_allow_defaults=True)
|
22 |
+
model = model.to(device=device).eval()
|
23 |
+
|
24 |
+
NOISES = {
|
25 |
+
"None": None,
|
26 |
+
"Kitchen": "samples/dkitchen.wav",
|
27 |
+
"Living Room": "samples/dliving.wav",
|
28 |
+
"River": "samples/nriver.wav",
|
29 |
+
"Cafe": "samples/scafe.wav",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def mix_at_snr(clean, noise, snr, eps=1e-10):
|
34 |
+
"""Mix clean and noise signal at a given SNR.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
clean: 1D Tensor with the clean signal to mix.
|
38 |
+
noise: 1D Tensor of shape.
|
39 |
+
snr: Signal to noise ratio.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
clean: 1D Tensor with gain changed according to the snr.
|
43 |
+
noise: 1D Tensor with the combined noise channels.
|
44 |
+
mix: 1D Tensor with added clean and noise signals.
|
45 |
+
|
46 |
+
"""
|
47 |
+
clean = torch.as_tensor(clean).mean(0, keepdim=True)
|
48 |
+
noise = torch.as_tensor(noise).mean(0, keepdim=True)
|
49 |
+
if noise.shape[1] < clean.shape[1]:
|
50 |
+
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1]))))
|
51 |
+
max_start = int(noise.shape[1] - clean.shape[1])
|
52 |
+
start = torch.randint(0, max_start, ()).item()
|
53 |
+
logger.debug(f"start: {start}, {clean.shape}")
|
54 |
+
noise = noise[:, start : start + clean.shape[1]]
|
55 |
+
E_speech = torch.mean(clean.pow(2)) + eps
|
56 |
+
E_noise = torch.mean(noise.pow(2))
|
57 |
+
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
|
58 |
+
noise = noise / K
|
59 |
+
mixture = clean + noise
|
60 |
+
logger.debug("mixture: {mixture.shape}")
|
61 |
+
assert torch.isfinite(mixture).all()
|
62 |
+
max_m = mixture.abs().max()
|
63 |
+
if max_m > 1:
|
64 |
+
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}")
|
65 |
+
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m
|
66 |
+
return clean, noise, mixture
|
67 |
+
|
68 |
+
|
69 |
+
def load_audio_gradio(
|
70 |
+
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int
|
71 |
+
) -> Optional[Tuple[Tensor, AudioMetaData]]:
|
72 |
+
if audio_or_file is None:
|
73 |
+
return None
|
74 |
+
if isinstance(audio_or_file, str):
|
75 |
+
if audio_or_file.lower() == "none":
|
76 |
+
return None
|
77 |
+
# First try default format
|
78 |
+
audio, meta = load_audio(audio_or_file, sr)
|
79 |
+
else:
|
80 |
+
meta = AudioMetaData(-1, -1, -1, -1, "")
|
81 |
+
assert isinstance(audio_or_file, (tuple, list))
|
82 |
+
meta.sample_rate, audio_np = audio_or_file
|
83 |
+
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not.
|
84 |
+
audio_np = audio_np.reshape(audio_np.shape[0], -1).T
|
85 |
+
if audio_np.dtype == np.int16:
|
86 |
+
audio_np = (audio_np / (1 << 15)).astype(np.float32)
|
87 |
+
elif audio_np.dtype == np.int32:
|
88 |
+
audio_np = (audio_np / (1 << 31)).astype(np.float32)
|
89 |
+
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr)
|
90 |
+
return audio, meta
|
91 |
+
|
92 |
+
|
93 |
+
def demo_fn(
|
94 |
+
speech_rec: Union[str, Tuple[int, np.ndarray]], speech_upl: str, noise_type: str, snr: int
|
95 |
+
):
|
96 |
+
sr = config("sr", 48000, int, section="df")
|
97 |
+
logger.info(
|
98 |
+
f"Got parameters speech_rec: {speech_rec}, speech_upl: {speech_upl}, noise: {noise_type}"
|
99 |
+
)
|
100 |
+
noise_fn = NOISES[noise_type]
|
101 |
+
meta = AudioMetaData(-1, -1, -1, -1, "")
|
102 |
+
if speech_rec is None and speech_upl is None:
|
103 |
+
sample, meta = load_audio("samples/p232_013_clean.wav", sr)
|
104 |
+
elif speech_upl is not None:
|
105 |
+
sample, meta = load_audio(speech_upl, sr)
|
106 |
+
else:
|
107 |
+
tmp = load_audio_gradio(speech_rec, sr)
|
108 |
+
assert tmp is not None
|
109 |
+
sample, meta = tmp
|
110 |
+
sample = sample[..., : 10 * meta.sample_rate] # limit to 10 seconds
|
111 |
+
logger.info(f"Loaded sample with shape {sample.shape}")
|
112 |
+
if noise_fn is not None:
|
113 |
+
noise, _ = load_audio(noise_fn, sr) # type: ignore
|
114 |
+
logger.info(f"Loaded noise with shape {noise.shape}")
|
115 |
+
_, _, sample = mix_at_snr(sample, noise, snr)
|
116 |
+
logger.info("Start denoising audio")
|
117 |
+
enhanced = enhance(model, df, sample)
|
118 |
+
logger.info("Denoising finished")
|
119 |
+
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
|
120 |
+
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
|
121 |
+
enhanced = enhanced * lim
|
122 |
+
# if meta.sample_rate != sr:
|
123 |
+
# enhanced = resample(enhanced, sr, meta.sample_rate)
|
124 |
+
# noisy = resample(noisy, sr, meta.sample_rate)
|
125 |
+
# sr = meta.sample_rate
|
126 |
+
noisy_fn = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
|
127 |
+
save_audio(noisy_fn, sample, sr)
|
128 |
+
enhanced_fn = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
|
129 |
+
save_audio(enhanced_fn, enhanced, sr)
|
130 |
+
logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
|
131 |
+
return (
|
132 |
+
noisy_fn,
|
133 |
+
spec_figure(sample, sr=sr),
|
134 |
+
enhanced_fn,
|
135 |
+
spec_figure(enhanced, sr=sr),
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
def specshow(
|
140 |
+
spec,
|
141 |
+
ax=None,
|
142 |
+
title=None,
|
143 |
+
xlabel=None,
|
144 |
+
ylabel=None,
|
145 |
+
sr=48000,
|
146 |
+
n_fft=None,
|
147 |
+
hop=None,
|
148 |
+
t=None,
|
149 |
+
f=None,
|
150 |
+
vmin=-100,
|
151 |
+
vmax=0,
|
152 |
+
xlim=None,
|
153 |
+
ylim=None,
|
154 |
+
cmap="inferno",
|
155 |
+
):
|
156 |
+
"""Plots a spectrogram of shape [F, T]"""
|
157 |
+
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec
|
158 |
+
if ax is not None:
|
159 |
+
set_title = ax.set_title
|
160 |
+
set_xlabel = ax.set_xlabel
|
161 |
+
set_ylabel = ax.set_ylabel
|
162 |
+
set_xlim = ax.set_xlim
|
163 |
+
set_ylim = ax.set_ylim
|
164 |
+
else:
|
165 |
+
ax = plt
|
166 |
+
set_title = plt.title
|
167 |
+
set_xlabel = plt.xlabel
|
168 |
+
set_ylabel = plt.ylabel
|
169 |
+
set_xlim = plt.xlim
|
170 |
+
set_ylim = plt.ylim
|
171 |
+
if n_fft is None:
|
172 |
+
if spec.shape[0] % 2 == 0:
|
173 |
+
n_fft = spec.shape[0] * 2
|
174 |
+
else:
|
175 |
+
n_fft = (spec.shape[0] - 1) * 2
|
176 |
+
hop = hop or n_fft // 4
|
177 |
+
if t is None:
|
178 |
+
t = np.arange(0, spec_np.shape[-1]) * hop / sr
|
179 |
+
if f is None:
|
180 |
+
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000
|
181 |
+
im = ax.pcolormesh(
|
182 |
+
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap
|
183 |
+
)
|
184 |
+
if title is not None:
|
185 |
+
set_title(title)
|
186 |
+
if xlabel is not None:
|
187 |
+
set_xlabel(xlabel)
|
188 |
+
if ylabel is not None:
|
189 |
+
set_ylabel(ylabel)
|
190 |
+
if xlim is not None:
|
191 |
+
set_xlim(xlim)
|
192 |
+
if ylim is not None:
|
193 |
+
set_ylim(ylim)
|
194 |
+
return im
|
195 |
+
|
196 |
+
|
197 |
+
def spec_figure(
|
198 |
+
audio: torch.Tensor,
|
199 |
+
figsize=(15, 5),
|
200 |
+
colorbar=False,
|
201 |
+
colorbar_format=None,
|
202 |
+
figure=None,
|
203 |
+
return_im=False,
|
204 |
+
labels=True,
|
205 |
+
**kwargs,
|
206 |
+
) -> plt.Figure:
|
207 |
+
audio = torch.as_tensor(audio)
|
208 |
+
if labels:
|
209 |
+
kwargs.setdefault("xlabel", "Time [s]")
|
210 |
+
kwargs.setdefault("ylabel", "Frequency [Hz]")
|
211 |
+
n_fft = kwargs.setdefault("n_fft", 1024)
|
212 |
+
hop = kwargs.setdefault("hop", 512)
|
213 |
+
w = torch.hann_window(n_fft, device=audio.device)
|
214 |
+
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False)
|
215 |
+
spec = spec.div_(w.pow(2).sum())
|
216 |
+
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10)
|
217 |
+
kwargs.setdefault("vmax", max(0.0, spec.max().item()))
|
218 |
+
|
219 |
+
if figure is None:
|
220 |
+
figure = plt.figure(figsize=figsize)
|
221 |
+
figure.set_tight_layout(True)
|
222 |
+
if spec.dim() > 2:
|
223 |
+
spec = spec.squeeze(0)
|
224 |
+
im = specshow(spec, **kwargs)
|
225 |
+
if colorbar:
|
226 |
+
ckwargs = {}
|
227 |
+
if "ax" in kwargs:
|
228 |
+
if colorbar_format is None:
|
229 |
+
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None:
|
230 |
+
colorbar_format = "%+2.0f dB"
|
231 |
+
ckwargs = {"ax": kwargs["ax"]}
|
232 |
+
plt.colorbar(im, format=colorbar_format, **ckwargs)
|
233 |
+
if return_im:
|
234 |
+
return im
|
235 |
+
return figure
|
236 |
+
|
237 |
+
|
238 |
+
inputs = [
|
239 |
+
gradio.inputs.Audio(
|
240 |
+
label="Record your own voice",
|
241 |
+
source="microphone",
|
242 |
+
type="numpy",
|
243 |
+
optional=True,
|
244 |
+
),
|
245 |
+
gradio.inputs.Audio(
|
246 |
+
label="Alternative: Upload audio sample",
|
247 |
+
source="upload",
|
248 |
+
type="filepath",
|
249 |
+
optional=True,
|
250 |
+
),
|
251 |
+
gradio.inputs.Dropdown(
|
252 |
+
label="Add background noise",
|
253 |
+
choices=list(NOISES.keys()),
|
254 |
+
default="None",
|
255 |
+
),
|
256 |
+
gradio.inputs.Dropdown(
|
257 |
+
label="Noise Level (SNR)",
|
258 |
+
choices=[-5, 0, 10, 20],
|
259 |
+
default=10,
|
260 |
+
),
|
261 |
+
]
|
262 |
+
outputs = [
|
263 |
+
gradio.outputs.Audio(label="Noisy"),
|
264 |
+
gradio.outputs.Image(type="plot"),
|
265 |
+
gradio.outputs.Audio(label="Enhanced"),
|
266 |
+
gradio.outputs.Image(type="plot"),
|
267 |
+
]
|
268 |
+
description = "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
|
269 |
+
iface = gradio.Interface(
|
270 |
+
fn=demo_fn,
|
271 |
+
title="DeepFilterNet2 Demo",
|
272 |
+
inputs=inputs,
|
273 |
+
outputs=outputs,
|
274 |
+
description=description,
|
275 |
+
layout="horizontal",
|
276 |
+
allow_flagging="never",
|
277 |
+
article=markdown.markdown(open("usage.md").read()),
|
278 |
+
)
|
279 |
+
iface.launch(cache_examples=False, debug=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
pyproject.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 100
|
3 |
+
target-version = ["py37", "py38", "py39", "py310"]
|
4 |
+
include = '\.pyi?$'
|
5 |
+
|
6 |
+
[tool.isort]
|
7 |
+
profile = "black"
|
8 |
+
line_length = 100
|
9 |
+
skip_gitignore = true
|
10 |
+
known_first_party = ["df", "libdf", "libdfdata"]
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchaudio
|
3 |
+
deepfilternet==0.2.0
|
4 |
+
matplotlib
|
5 |
+
markdown
|
6 |
+
gradio
|
usage.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**Usage:**
|
2 |
+
|
3 |
+
This demo takes a audio sample and enhances it using DeepFilterNet2.
|
4 |
+
You can either record a speech sample or alternatively provide one via upload.
|
5 |
+
Furthermore, you may optionally add some additional background noise to the input sample.
|
6 |
+
If no samples are provided, a default will be used.
|
7 |
+
|
8 |
+
DeepFilterNet2 [(link)](https://github.com/Rikorose/DeepFilterNet) is used to denoise the noisy mixture.
|