Hendrik Schroeter commited on
Commit
e8d5f8b
1 Parent(s): f81803d

gradio compat

Browse files
Files changed (1) hide show
  1. app.py +12 -19
app.py CHANGED
@@ -15,7 +15,7 @@ from torchaudio.backend.common import AudioMetaData
15
 
16
  from df import config
17
  from df.enhance import enhance, init_df, load_audio, save_audio
18
- from df.utils import resample
19
 
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
@@ -99,28 +99,21 @@ def load_audio_gradio(
99
  return audio, meta
100
 
101
 
102
- def demo_fn(
103
- speech_rec: Union[str, Tuple[int, np.ndarray]], speech_upl: str, noise_type: str, snr: int
104
- ):
105
  sr = config("sr", 48000, int, section="df")
106
- logger.info(
107
- f"Got parameters speech_rec: {speech_rec}, speech_upl: {speech_upl}, noise: {noise_type}"
108
- )
109
  noise_fn = NOISES[noise_type]
110
  meta = AudioMetaData(-1, -1, -1, -1, "")
111
  max_s = 10 # limit to 10 seconds
112
- if speech_rec is None and speech_upl is None:
113
- sample, meta = load_audio("samples/p232_013_clean.wav", sr)
114
- elif speech_upl is not None:
115
  sample, meta = load_audio(speech_upl, sr)
116
  max_len = max_s * sr
117
  if sample.shape[-1] > max_len:
118
  start = torch.randint(0, sample.shape[-1] - max_len, ()).item()
119
  sample = sample[..., start : start + max_len]
120
  else:
121
- tmp = load_audio_gradio(speech_rec, sr)
122
- assert tmp is not None
123
- sample, meta = tmp
124
  sample = sample[..., : max_s * sr]
125
  if sample.dim() > 1 and sample.shape[0] > 1:
126
  assert (
@@ -274,15 +267,15 @@ inputs = [
274
  ),
275
  gradio.inputs.Dropdown(
276
  label="Noise Level (SNR)",
277
- choices=[-5, 0, 10, 20],
278
- default=10,
279
  ),
280
  ]
281
  outputs = [
282
- gradio.outputs.Audio(label="Noisy audio"),
283
- gradio.outputs.Image(type="plot", label="Noisy spectrogram"),
284
- gradio.outputs.Audio(label="Enhanced audio"),
285
- gradio.outputs.Image(type="plot", label="Enhanced spectrogram"),
286
  ]
287
  description = "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
288
  iface = gradio.Interface(
 
15
 
16
  from df import config
17
  from df.enhance import enhance, init_df, load_audio, save_audio
18
+ from df.io import resample
19
 
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
 
99
  return audio, meta
100
 
101
 
102
+ def demo_fn(speech_upl: str, noise_type: str, snr: int):
 
 
103
  sr = config("sr", 48000, int, section="df")
104
+ logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}")
105
+ snr = int(snr)
 
106
  noise_fn = NOISES[noise_type]
107
  meta = AudioMetaData(-1, -1, -1, -1, "")
108
  max_s = 10 # limit to 10 seconds
109
+ if speech_upl is not None:
 
 
110
  sample, meta = load_audio(speech_upl, sr)
111
  max_len = max_s * sr
112
  if sample.shape[-1] > max_len:
113
  start = torch.randint(0, sample.shape[-1] - max_len, ()).item()
114
  sample = sample[..., start : start + max_len]
115
  else:
116
+ sample, meta = load_audio("samples/p232_013_clean.wav", sr)
 
 
117
  sample = sample[..., : max_s * sr]
118
  if sample.dim() > 1 and sample.shape[0] > 1:
119
  assert (
 
267
  ),
268
  gradio.inputs.Dropdown(
269
  label="Noise Level (SNR)",
270
+ choices=["-5", "0", "10", "20"],
271
+ default="10",
272
  ),
273
  ]
274
  outputs = [
275
+ gradio.Audio(type="filepath", label="Noisy audio"),
276
+ gradio.Plot(label="Noisy spectrogram"),
277
+ gradio.Audio(type="filepath", label="Enhanced audio"),
278
+ gradio.Plot(label="Enhanced spectrogram"),
279
  ]
280
  description = "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
281
  iface = gradio.Interface(