import time import json import random import base64 from io import BytesIO from fire import Fire import streamlit as st from ase.atoms import Atoms from ase.build import bulk from ase.io import write from chemeleon import Chemeleon from chemeleon.visualize import Visualizer from utils import dict_to_atoms # Constants TIMESTEPS = 1000 TRAJECTORY_STEPS = 100 DEFAULT_NUM_SAMPLES = 3 DEMO = False # Set page configuration st.set_page_config(page_title="Chemeleon", layout="wide") # Hide Streamlit's default menu and footer for a cleaner look hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) def demo_generator_structures(num_atoms, text_input, num_samples): """ Generate crystal structures for demonstration purposes. """ elements = random.choices(["Si", "Ge", "C", "Na", "Cl"], k=num_samples) random_elements = random.choices(elements, k=num_atoms) for step in range(TIMESTEPS): time.sleep(0.001) random_atoms = Atoms( "Li", positions=[[random.random() * 5 for _ in range(3)]], ) atoms_list = [bulk(element, "fcc", a=5.43) for element in random_elements] new_atoms_list = [] for atoms in atoms_list: # Adding random atoms to each bulk structure combined_atoms = atoms + random_atoms new_atoms_list.append(combined_atoms) yield new_atoms_list def generator_structures_chemeleon( num_atoms, test_input, num_samples, use_client=False ): """ Generate crystal structures based on the given number of atoms and input text. """ if use_client: response = client( url="https://8000-01j80snre5xdhq828s1q5brs0m.cloudspaces.litng.ai/predict", n_samples=num_samples, n_atoms=num_atoms, text_input=test_input, ) for line in response.iter_lines(): output = json.loads(line)["output"] atom_dict = json.loads(output) atoms_list = [dict_to_atoms(atoms_dict) for atoms_dict in atom_dict] yield atoms_list else: chemeleon = Chemeleon.load_general_text_model() for atoms_list in chemeleon.sample( text_input=test_input, n_atoms=num_atoms, n_samples=num_samples, stream=True, ): yield atoms_list def visualize_structure(atoms): """ Visualize the given atomic structure using Plotly. """ visualizer = Visualizer([atoms], atomic_size=0.6, resolution=20) fig = visualizer.view() return fig def visualize_trajectory(atoms_list): """ Visualize the given atomic structure trajectory using Plotly. """ visualizer = Visualizer(atoms_list, atomic_size=0.6, resolution=20) fig = visualizer.view_trajectory(duration=1000) return fig # Main application function def main(use_client=False): # Initialize session state if "structures" not in st.session_state: st.session_state.structures = [] if "trajectory" not in st.session_state: st.session_state.trajectory = [] if "progress_in_generating" not in st.session_state: st.session_state["progress_in_generating"] = False # Sidebar for user inputs with st.sidebar: st.image("assets/logo_static.jpg", width=200) st.markdown( """

Chemeleon

A text-guided diffusion model for crystal structure generation

""", unsafe_allow_html=True, ) st.markdown("---") description = st.text_input( "Input your text prompt to generate crystal structures", "A Crystal Structure of LiMnO4 with orthorhombic symmetry", help="Examples: 'LiMnO4' or 'A Crystal Structure of BaTiO3 with cubic symmetry'", ) num_atoms = st.slider( "๐Ÿ”ข Number of Atoms:", min_value=1, max_value=20, value=6, help="Select the number of atoms in the unit cell.", ) num_samples = st.number_input( "๐Ÿงช Number of Samples:", min_value=1, max_value=5, value=DEFAULT_NUM_SAMPLES, step=1, help="Determine how many structure samples to generate.", ) # Generate Structures when button is clicked if st.session_state["progress_in_generating"]: # Clear previous structures st.session_state.structures = [] st.session_state.trajectory = [] # Initialize progress bar in the sidebar progress_placeholder = st.empty() progress_bar = progress_placeholder.progress(0) # Initialize loading animation image_placeholder = st.empty() with st.spinner("Generating structures..."): with image_placeholder: data_url = base64.b64encode( open("assets/logo.gif", "rb").read() ).decode() image_placeholder.markdown( f'', unsafe_allow_html=True, ) # Generate structures trajectory = [] if DEMO: generator = demo_generator_structures(num_atoms, description, num_samples) else: generator = generator_structures_chemeleon( num_atoms, description, num_samples, use_client ) for step, atoms_list in enumerate(generator): progress_bar.progress((step + 1) / TIMESTEPS) if step % TRAJECTORY_STEPS == 0 or step == TIMESTEPS - 1: st.session_state.structures = atoms_list trajectory.append(atoms_list) st.session_state.trajectory = trajectory # Remove the progress bar progress_placeholder.empty() # Remove the loading animation image_placeholder.empty() # Reset the progress state st.session_state["progress_in_generating"] = False # Display success message st.sidebar.success("โœจ Structures generated successfully!") with st.sidebar: if st.button( "Generate Structures ๐Ÿš€", disabled=st.session_state["progress_in_generating"], ): st.session_state["progress_in_generating"] = True st.rerun() # Check if structures are generated if st.session_state.structures: # Tabs for visualization tabs = st.tabs(["Structure Visualization", "Trajectory Analysis"]) # Structure Visualization Tab with tabs[0]: col1, col2 = st.columns([1, 3]) with col1: st.session_state.selected_sample_index = ( st.radio( "Select Sample", options=list(range(1, num_samples + 1)), index=0, help="Choose which sample to visualize.", ) - 1 ) # Adjust for zero-based indexing # Download file atoms = st.session_state.structures[ st.session_state.selected_sample_index ] buffer = BytesIO() write(buffer, atoms, format="cif") buffer.seek(0) st.download_button( label="Download CIF File", data=buffer, file_name=f"{str(atoms.symbols)}.cif", mime="chemical/cif", ) with col2: atoms = st.session_state.structures[ st.session_state.selected_sample_index ] fig = visualize_structure(atoms) st.plotly_chart(fig, use_container_width=True) # Trajectory Analysis Tab with tabs[1]: if st.session_state.trajectory: trajectory = [ traj[st.session_state.selected_sample_index] for traj in st.session_state.trajectory ] tabs_2 = st.tabs(["Animation", "Step View"]) # Animation with tabs_2[0]: fig = visualize_trajectory(trajectory) st.plotly_chart(fig, use_container_width=True) # Slider with tabs_2[1]: trajectory_index = st.slider( "Select Trajectory Step", min_value=0, max_value=len(trajectory) - 1, value=0, step=1, help="Navigate through different steps of the structure generation.", ) selected_atoms = trajectory[trajectory_index] trajectory_fig = visualize_structure(selected_atoms) st.plotly_chart(trajectory_fig, use_container_width=True) else: st.info("No trajectory data available.") # Footer st.markdown( """

Developed by Hyunsoo Park, as a part of Materials Design Group at Imperial College London

Research Paper | Repository

""", unsafe_allow_html=True, ) if __name__ == "__main__": Fire(main) # Usage example: streamlit run app/streamlit_app.py -- --use_client=True