File size: 4,657 Bytes
8f691f9
 
 
 
1cce0f0
8f691f9
1cce0f0
 
 
81e5760
7227a9c
 
47636ca
7227a9c
f4fc7fd
7227a9c
075782c
71bb7de
dea1924
1cce0f0
8f691f9
7227a9c
 
 
 
 
 
 
b2bac59
7227a9c
 
 
 
 
 
 
 
 
8f691f9
1cce0f0
1c3b91b
7227a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977066
1cce0f0
 
7227a9c
71bb7de
7227a9c
 
8f691f9
 
7227a9c
 
 
 
7c44ba4
5cb4c34
1cce0f0
7227a9c
 
8f691f9
 
1cce0f0
eb720c8
8f691f9
eb720c8
69a2cd2
71bb7de
eb720c8
8f691f9
 
7227a9c
8f691f9
 
 
 
 
 
7227a9c
1cce0f0
8f691f9
 
7227a9c
8f691f9
 
ca1b999
8f691f9
 
7227a9c
8f691f9
 
 
 
 
 
 
7227a9c
8f691f9
7227a9c
8f691f9
 
 
7227a9c
 
 
 
8f691f9
 
 
7227a9c
 
 
8f691f9
 
7227a9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict



model_id = "Disty0/LCM_SoteMix"
#model_id = "Disty0/sotediffusion-v2" #不可

#1024*512 記憶體不足
HIGH=512
WIDTH=512

batch_size = -1

class CustomOVModelVaeDecoder(OVModelVaeDecoder):
    def __init__(
        self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
    ):
        super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)


pipe = OVStableDiffusionPipeline.from_pretrained(
        model_id, 
        compile = False, 
        ov_config = {"CACHE_DIR":""},
        torch_dtype=torch.int8, #快
        #torch_dtype=torch.bfloat16, #中
        #variant="fp16", 
        #torch_dtype=torch.IntTensor, #慢
        use_safetensors=False,
        )

taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")

pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), 
                                           parent_model = pipe, 
                                           model_dir = taesd_dir
                                          )



pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")


pipe.compile()

prompt=""
negative_prompt="(worst quality, low quality, lowres, loli, kid, child), zombie, interlocked fingers, large breasts, username, watermark,"

def infer(prompt,negative_prompt):

    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        width = WIDTH, 
        height = HIGH,
        guidance_scale=1.0,
        num_inference_steps=8,
        num_images_per_prompt=1,
    ).images[0] 
    
    return image



examples = [
    "(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
    "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
    "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
    "((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Disty0/LCM_SoteMix {WIDTH}x{HIGH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()