File size: 4,600 Bytes
93b0d61
 
3852617
 
13d4422
190a4b0
6904e5b
a9b0d5c
e1e9b2f
3cb41a0
 
93b0d61
2b71a62
9e31b54
3852617
 
 
 
 
 
 
9e31b54
 
5593d4b
 
 
 
 
 
3852617
93b0d61
03b3c4e
 
 
3820dc1
03b3c4e
 
 
9e31b54
3852617
 
 
 
5effa4b
9e31b54
3852617
9014042
 
c082d19
93b0d61
82e6660
93b0d61
 
 
03b3c4e
eabda09
ee70940
199d6f6
93b0d61
03b3c4e
 
 
 
4574f83
199d6f6
 
03b3c4e
93b0d61
 
 
03b3c4e
93b0d61
 
 
 
 
 
 
 
 
 
 
 
d14eae4
93b0d61
 
 
 
7e4ff0a
93b0d61
 
 
 
 
 
ee70940
93b0d61
 
5593d4b
 
 
 
 
 
93b0d61
03b3c4e
7e4ff0a
03b3c4e
93b0d61
 
03b3c4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import torch
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict

model_id = "rupeshs/sdxs-512-0.9-openvino"

HIGH = 512
WIDTH = 512

batch_size = -1  # Or set it to a specific positive integer if needed
"""
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
    def __init__(
        self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
    ):
        super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)


"""

examples = [
    "(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
    "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
    "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
    "((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]

pipe = OVStableDiffusionPipeline.from_pretrained(
    model_id,
    compile=False,
    ov_config={"CACHE_DIR": ""},
    torch_dtype=torch.bfloat16,  # More standard dtype for speed
    safety_checker=None,
    use_safetensors=False,
)
"""
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")

pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), 
                                           parent_model = pipe, 
                                           model_dir = taesd_dir
       

                                   )
"""
print(pipe.scheduler.compatibles)

pipe.reshape(batch_size=batch_size, height=HIGH, width=WIDTH, num_images_per_prompt=2)

pipe.compile()

prompt = ""
negative_prompt = "Easy Negative, worst quality, low quality, normal quality, lowers, monochrome, grayscales, skin spots, acnes, skin blemishes, age spot, 6 more fingers on one hand, deformity, bad legs, error legs, bad feet, malformed limbs, extra limbs, ugly, poorly drawn hands, poorly drawn feet, poorly drawn face, text, mutilated, extra fingers, mutated hands, mutation, bad anatomy, cloned face, disfigured, fused fingers"

def infer(prompt, negative_prompt, num_images_per_prompt=1):
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=WIDTH,
        height=HIGH,
        guidance_scale=1.0, #不能超過1.0, 7.5會無法繪圖 
        num_inference_steps=1,#step超過1會很怪
        num_images_per_prompt=num_images_per_prompt,
    ).images[0]
    
    return image

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # {model_id.split('/')[1]} {WIDTH}x{HIGH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt  = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=1)
        
        result = gr.Image(label="Result", show_label=False)
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result]
        )
    run_button.click(
        fn=infer,
        inputs=[prompt],
        outputs=[result]
    )

demo.queue().launch()