Spaces:
Running
Running
fix ui not updating outputs when changing parameters
Browse filesincrease video processing pipeline duration
fix markdown center alignment
add reference to the original marigold demo
simplify the bas-relief updates via ux
point to the prs-eth org model checkpoints
fix reproducibility with seeding
add license headers
- README.md +7 -10
- app.py +47 -44
- extrude.py +20 -0
- marigold_depth_estimation_lcm.py +10 -4
- requirements.txt +5 -4
README.md
CHANGED
@@ -4,26 +4,23 @@ emoji: 🏵️
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: cc-by-sa-4.0
|
11 |
models:
|
12 |
-
- prs-eth/marigold-v1-0
|
13 |
- prs-eth/marigold-lcm-v1-0
|
14 |
---
|
15 |
|
16 |
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
|
17 |
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step.
|
18 |
-
Find out more in our paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
|
19 |
|
20 |
```
|
21 |
-
@
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
archivePrefix={arXiv},
|
27 |
-
primaryClass={cs.CV}
|
28 |
}
|
29 |
```
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.21.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: cc-by-sa-4.0
|
11 |
models:
|
|
|
12 |
- prs-eth/marigold-lcm-v1-0
|
13 |
---
|
14 |
|
15 |
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
|
16 |
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step.
|
17 |
+
Find out more in our CVPR 2024 paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
|
18 |
|
19 |
```
|
20 |
+
@InProceedings{ke2023repurposing,
|
21 |
+
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
|
22 |
+
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
|
23 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
24 |
+
year={2024}
|
|
|
|
|
25 |
}
|
26 |
```
|
app.py
CHANGED
@@ -1,6 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import functools
|
2 |
import os
|
3 |
-
import
|
4 |
import zipfile
|
5 |
from io import BytesIO
|
6 |
|
@@ -10,7 +30,6 @@ import imageio as imageio
|
|
10 |
import numpy as np
|
11 |
import torch as torch
|
12 |
from PIL import Image
|
13 |
-
from diffusers import UNet2DConditionModel, LCMScheduler
|
14 |
from gradio_imageslider import ImageSlider
|
15 |
from huggingface_hub import login
|
16 |
from tqdm import tqdm
|
@@ -52,7 +71,6 @@ def process_image(
|
|
52 |
denoise_steps=default_image_denoise_steps,
|
53 |
ensemble_size=default_image_ensemble_size,
|
54 |
processing_res=default_image_processing_res,
|
55 |
-
reproducible=default_image_reproducuble,
|
56 |
):
|
57 |
input_image = Image.open(path_input)
|
58 |
|
@@ -62,7 +80,7 @@ def process_image(
|
|
62 |
ensemble_size=ensemble_size,
|
63 |
processing_res=processing_res,
|
64 |
batch_size=1 if processing_res == 0 else 0,
|
65 |
-
seed=default_seed
|
66 |
show_progress_bar=False,
|
67 |
)
|
68 |
|
@@ -70,8 +88,7 @@ def process_image(
|
|
70 |
depth_colored = pipe_out.depth_colored
|
71 |
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
|
72 |
|
73 |
-
path_output_dir =
|
74 |
-
os.makedirs(path_output_dir, exist_ok=True)
|
75 |
|
76 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
77 |
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
@@ -99,8 +116,7 @@ def process_video(
|
|
99 |
out_max_frames=default_video_out_max_frames,
|
100 |
progress=gr.Progress(),
|
101 |
):
|
102 |
-
path_output_dir =
|
103 |
-
os.makedirs(path_output_dir, exist_ok=True)
|
104 |
|
105 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
106 |
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
@@ -152,6 +168,7 @@ def process_video(
|
|
152 |
batch_size=0,
|
153 |
depth_latent_init=prev_depth_latent,
|
154 |
depth_latent_init_strength=depth_latent_init_strength,
|
|
|
155 |
seed=default_seed,
|
156 |
show_progress_bar=False,
|
157 |
)
|
@@ -204,8 +221,7 @@ def process_bas(
|
|
204 |
if plane_near >= plane_far:
|
205 |
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
|
206 |
|
207 |
-
path_output_dir =
|
208 |
-
os.makedirs(path_output_dir, exist_ok=True)
|
209 |
|
210 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
211 |
|
@@ -280,7 +296,7 @@ def process_bas(
|
|
280 |
|
281 |
def run_demo_server(pipe):
|
282 |
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
|
283 |
-
process_pipe_video = spaces.GPU(functools.partial(process_video, pipe))
|
284 |
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
|
285 |
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
286 |
|
@@ -304,6 +320,18 @@ def run_demo_server(pipe):
|
|
304 |
font-size: 20px !important;
|
305 |
color: crimson !important;
|
306 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
""",
|
308 |
head="""
|
309 |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
@@ -317,7 +345,7 @@ def run_demo_server(pipe):
|
|
317 |
) as demo:
|
318 |
gr.Markdown(
|
319 |
"""
|
320 |
-
|
321 |
<p align="center">
|
322 |
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
323 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
@@ -336,9 +364,10 @@ def run_demo_server(pipe):
|
|
336 |
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
|
337 |
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
|
338 |
We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>.
|
339 |
-
Upload your content into the <b>
|
340 |
-
Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>
|
341 |
To avoid queuing, fork the demo into your profile.
|
|
|
342 |
</p>
|
343 |
"""
|
344 |
)
|
@@ -474,8 +503,6 @@ def run_demo_server(pipe):
|
|
474 |
<p align="justify">
|
475 |
This part of the demo uses Marigold-LCM to create a bas-relief model.
|
476 |
The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
|
477 |
-
Start by uploading the image and click "Create" with the default parameters.
|
478 |
-
To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.
|
479 |
</p>
|
480 |
""",
|
481 |
)
|
@@ -487,7 +514,6 @@ def run_demo_server(pipe):
|
|
487 |
)
|
488 |
with gr.Row():
|
489 |
bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
|
490 |
-
bas_clear_btn = gr.Button(value="Clear")
|
491 |
bas_reset_btn = gr.Button(value="Reset")
|
492 |
with gr.Accordion("3D printing demo: Main options", open=True):
|
493 |
bas_plane_near = gr.Slider(
|
@@ -703,13 +729,8 @@ def run_demo_server(pipe):
|
|
703 |
concurrency_limit=1,
|
704 |
)
|
705 |
|
706 |
-
def wrapper_process_pipe_bas(*args, **kwargs):
|
707 |
-
out = list(process_pipe_bas(*args, **kwargs))
|
708 |
-
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
|
709 |
-
return out
|
710 |
-
|
711 |
bas_submit_btn.click(
|
712 |
-
fn=
|
713 |
inputs=[
|
714 |
bas_input,
|
715 |
bas_plane_near,
|
@@ -725,18 +746,7 @@ def run_demo_server(pipe):
|
|
725 |
bas_frame_near,
|
726 |
bas_frame_far,
|
727 |
],
|
728 |
-
outputs=[
|
729 |
-
concurrency_limit=1,
|
730 |
-
)
|
731 |
-
|
732 |
-
bas_clear_btn.click(
|
733 |
-
fn=lambda: (gr.Button(interactive=True), None, None),
|
734 |
-
inputs=[],
|
735 |
-
outputs=[
|
736 |
-
bas_submit_btn,
|
737 |
-
bas_output_viewer,
|
738 |
-
bas_output_files,
|
739 |
-
],
|
740 |
concurrency_limit=1,
|
741 |
)
|
742 |
|
@@ -790,21 +800,14 @@ def run_demo_server(pipe):
|
|
790 |
|
791 |
|
792 |
def main():
|
793 |
-
CHECKPOINT = "prs-eth/marigold-v1-0"
|
794 |
-
CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0"
|
795 |
|
796 |
if "HF_TOKEN_LOGIN" in os.environ:
|
797 |
login(token=os.environ["HF_TOKEN_LOGIN"])
|
798 |
|
799 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
800 |
|
801 |
-
pipe = MarigoldDepthConsistencyPipeline.from_pretrained(
|
802 |
-
CHECKPOINT,
|
803 |
-
unet=UNet2DConditionModel.from_pretrained(
|
804 |
-
CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True
|
805 |
-
),
|
806 |
-
)
|
807 |
-
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
808 |
try:
|
809 |
import xformers
|
810 |
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
import functools
|
22 |
import os
|
23 |
+
import tempfile
|
24 |
import zipfile
|
25 |
from io import BytesIO
|
26 |
|
|
|
30 |
import numpy as np
|
31 |
import torch as torch
|
32 |
from PIL import Image
|
|
|
33 |
from gradio_imageslider import ImageSlider
|
34 |
from huggingface_hub import login
|
35 |
from tqdm import tqdm
|
|
|
71 |
denoise_steps=default_image_denoise_steps,
|
72 |
ensemble_size=default_image_ensemble_size,
|
73 |
processing_res=default_image_processing_res,
|
|
|
74 |
):
|
75 |
input_image = Image.open(path_input)
|
76 |
|
|
|
80 |
ensemble_size=ensemble_size,
|
81 |
processing_res=processing_res,
|
82 |
batch_size=1 if processing_res == 0 else 0,
|
83 |
+
seed=default_seed,
|
84 |
show_progress_bar=False,
|
85 |
)
|
86 |
|
|
|
88 |
depth_colored = pipe_out.depth_colored
|
89 |
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
|
90 |
|
91 |
+
path_output_dir = tempfile.mkdtemp()
|
|
|
92 |
|
93 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
94 |
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
|
|
116 |
out_max_frames=default_video_out_max_frames,
|
117 |
progress=gr.Progress(),
|
118 |
):
|
119 |
+
path_output_dir = tempfile.mkdtemp()
|
|
|
120 |
|
121 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
122 |
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
|
|
168 |
batch_size=0,
|
169 |
depth_latent_init=prev_depth_latent,
|
170 |
depth_latent_init_strength=depth_latent_init_strength,
|
171 |
+
return_depth_latent=True,
|
172 |
seed=default_seed,
|
173 |
show_progress_bar=False,
|
174 |
)
|
|
|
221 |
if plane_near >= plane_far:
|
222 |
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
|
223 |
|
224 |
+
path_output_dir = tempfile.mkdtemp()
|
|
|
225 |
|
226 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
227 |
|
|
|
296 |
|
297 |
def run_demo_server(pipe):
|
298 |
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
|
299 |
+
process_pipe_video = spaces.GPU(functools.partial(process_video, pipe), duration=120)
|
300 |
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
|
301 |
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
302 |
|
|
|
320 |
font-size: 20px !important;
|
321 |
color: crimson !important;
|
322 |
}
|
323 |
+
h1 {
|
324 |
+
text-align: center;
|
325 |
+
display: block;
|
326 |
+
}
|
327 |
+
h2 {
|
328 |
+
text-align: center;
|
329 |
+
display: block;
|
330 |
+
}
|
331 |
+
h3 {
|
332 |
+
text-align: center;
|
333 |
+
display: block;
|
334 |
+
}
|
335 |
""",
|
336 |
head="""
|
337 |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
|
|
345 |
) as demo:
|
346 |
gr.Markdown(
|
347 |
"""
|
348 |
+
# Marigold-LCM Depth Estimation
|
349 |
<p align="center">
|
350 |
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
351 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
|
|
364 |
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
|
365 |
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
|
366 |
We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>.
|
367 |
+
Upload your content into the <b>first</b> pane, or click any of the <b>examples</b> below.
|
368 |
+
Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>second</b> pane.
|
369 |
To avoid queuing, fork the demo into your profile.
|
370 |
+
<a href="https://huggingface.co/spaces/prs-eth/marigold">The original Marigold demo is also available</a>.
|
371 |
</p>
|
372 |
"""
|
373 |
)
|
|
|
503 |
<p align="justify">
|
504 |
This part of the demo uses Marigold-LCM to create a bas-relief model.
|
505 |
The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
|
|
|
|
|
506 |
</p>
|
507 |
""",
|
508 |
)
|
|
|
514 |
)
|
515 |
with gr.Row():
|
516 |
bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
|
|
|
517 |
bas_reset_btn = gr.Button(value="Reset")
|
518 |
with gr.Accordion("3D printing demo: Main options", open=True):
|
519 |
bas_plane_near = gr.Slider(
|
|
|
729 |
concurrency_limit=1,
|
730 |
)
|
731 |
|
|
|
|
|
|
|
|
|
|
|
732 |
bas_submit_btn.click(
|
733 |
+
fn=process_pipe_bas,
|
734 |
inputs=[
|
735 |
bas_input,
|
736 |
bas_plane_near,
|
|
|
746 |
bas_frame_near,
|
747 |
bas_frame_far,
|
748 |
],
|
749 |
+
outputs=[bas_output_viewer, bas_output_files],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
concurrency_limit=1,
|
751 |
)
|
752 |
|
|
|
800 |
|
801 |
|
802 |
def main():
|
803 |
+
CHECKPOINT = "prs-eth/marigold-lcm-v1-0"
|
|
|
804 |
|
805 |
if "HF_TOKEN_LOGIN" in os.environ:
|
806 |
login(token=os.environ["HF_TOKEN_LOGIN"])
|
807 |
|
808 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
809 |
|
810 |
+
pipe = MarigoldDepthConsistencyPipeline.from_pretrained(CHECKPOINT)
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
try:
|
812 |
import xformers
|
813 |
|
extrude.py
CHANGED
@@ -1,3 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import os
|
3 |
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
import math
|
22 |
import os
|
23 |
|
marigold_depth_estimation_lcm.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright 2024
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -119,6 +119,7 @@ class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
|
119 |
batch_size: int = 0,
|
120 |
depth_latent_init: torch.Tensor = None,
|
121 |
depth_latent_init_strength: float = 0.1,
|
|
|
122 |
seed: int = None,
|
123 |
color_map: str = "Spectral",
|
124 |
show_progress_bar: bool = True,
|
@@ -147,6 +148,8 @@ class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
|
147 |
Initial depth map latent for better temporal consistency.
|
148 |
depth_latent_init_strength (`float`, *optional*, defaults to `0.1`)
|
149 |
Degree of initial depth latent influence, must be between 0 and 1.
|
|
|
|
|
150 |
seed (`int`, *optional*, defaults to `None`)
|
151 |
Reproducibility seed.
|
152 |
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
@@ -247,8 +250,11 @@ class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
|
247 |
min_d = torch.min(depth_pred)
|
248 |
max_d = torch.max(depth_pred)
|
249 |
depth_pred = (depth_pred - min_d) / (max_d - min_d)
|
250 |
-
if
|
251 |
-
|
|
|
|
|
|
|
252 |
|
253 |
# Convert to numpy
|
254 |
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
|
@@ -385,7 +391,7 @@ class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
|
385 |
).sample # [B, 4, h, w]
|
386 |
|
387 |
# compute the previous noisy sample x_t -> x_t-1
|
388 |
-
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
|
389 |
|
390 |
depth = self._decode_depth(depth_latent)
|
391 |
|
|
|
1 |
+
# Copyright 2024 Bingxin Ke, Anton Obukhov, ETH Zurich and The HuggingFace Team. All rights reserved.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
119 |
batch_size: int = 0,
|
120 |
depth_latent_init: torch.Tensor = None,
|
121 |
depth_latent_init_strength: float = 0.1,
|
122 |
+
return_depth_latent: bool = False,
|
123 |
seed: int = None,
|
124 |
color_map: str = "Spectral",
|
125 |
show_progress_bar: bool = True,
|
|
|
148 |
Initial depth map latent for better temporal consistency.
|
149 |
depth_latent_init_strength (`float`, *optional*, defaults to `0.1`)
|
150 |
Degree of initial depth latent influence, must be between 0 and 1.
|
151 |
+
return_depth_latent (`bool`, defaults to False)
|
152 |
+
Whether to return the depth latent.
|
153 |
seed (`int`, *optional*, defaults to `None`)
|
154 |
Reproducibility seed.
|
155 |
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
|
|
250 |
min_d = torch.min(depth_pred)
|
251 |
max_d = torch.max(depth_pred)
|
252 |
depth_pred = (depth_pred - min_d) / (max_d - min_d)
|
253 |
+
if return_depth_latent:
|
254 |
+
if ensemble_size > 1:
|
255 |
+
depth_latent = self._encode_depth(2 * depth_pred - 1)
|
256 |
+
else:
|
257 |
+
depth_latent = None
|
258 |
|
259 |
# Convert to numpy
|
260 |
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
|
|
|
391 |
).sample # [B, 4, h, w]
|
392 |
|
393 |
# compute the previous noisy sample x_t -> x_t-1
|
394 |
+
depth_latent = self.scheduler.step(noise_pred, t, depth_latent, generator=rng).prev_sample
|
395 |
|
396 |
depth = self._decode_depth(depth_latent)
|
397 |
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio==4.
|
2 |
gradio-imageslider==0.0.16
|
3 |
pygltflib==1.16.1
|
4 |
trimesh==4.0.5
|
@@ -6,10 +6,11 @@ imageio
|
|
6 |
imageio-ffmpeg
|
7 |
Pillow
|
8 |
|
9 |
-
|
|
|
10 |
diffusers==0.27.2
|
11 |
matplotlib==3.8.2
|
12 |
scipy==1.11.4
|
13 |
torch==2.0.1
|
14 |
-
transformers
|
15 |
-
xformers
|
|
|
1 |
+
gradio==4.21.0
|
2 |
gradio-imageslider==0.0.16
|
3 |
pygltflib==1.16.1
|
4 |
trimesh==4.0.5
|
|
|
6 |
imageio-ffmpeg
|
7 |
Pillow
|
8 |
|
9 |
+
spaces>=0.25.0
|
10 |
+
accelerate>=0.22.0
|
11 |
diffusers==0.27.2
|
12 |
matplotlib==3.8.2
|
13 |
scipy==1.11.4
|
14 |
torch==2.0.1
|
15 |
+
transformers>=4.32.1
|
16 |
+
xformers>=0.0.21
|