from streamlit import session_state as session import shutil import os import numpy as np from sklearn import neighbors from scipy.spatial import distance_matrix from pygco import cut_from_graph import streamlit_ext as ste import open3d as o3d import matplotlib.pyplot as plt import matplotlib.colors as mcolors from stqdm import stqdm import json from stpyvista import stpyvista import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import streamlit as st import pyvista as pv from PIL import Image class TeethApp: def __init__(self): # Font with open("utils/style.css") as css: st.markdown(f"", unsafe_allow_html=True) # Logo self.image_path = "utils/teeth-295404_1280.png" self.image = Image.open(self.image_path) width, height = self.image.size scale = 12 new_width, new_height = width / scale, height / scale self.image = self.image.resize((int(new_width), int(new_height))) # Streamlit side navigation bar st.sidebar.markdown("# AI ToothSeg") st.sidebar.markdown("Automatic teeth segmentation with Deep Learning") st.sidebar.markdown(" ") st.sidebar.image(self.image, use_column_width=False) st.markdown( """