from streamlit import session_state as session
import shutil
import os
import numpy as np
from sklearn import neighbors
from scipy.spatial import distance_matrix
from pygco import cut_from_graph
import streamlit_ext as ste
import open3d as o3d
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from stqdm import stqdm
import json
from stpyvista import stpyvista
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import streamlit as st
import pyvista as pv
from PIL import Image
class TeethApp:
def __init__(self):
# Font
with open("utils/style.css") as css:
st.markdown(f"", unsafe_allow_html=True)
# Logo
self.image_path = "utils/teeth-295404_1280.png"
self.image = Image.open(self.image_path)
width, height = self.image.size
scale = 12
new_width, new_height = width / scale, height / scale
self.image = self.image.resize((int(new_width), int(new_height)))
# Streamlit side navigation bar
st.sidebar.markdown("# AI ToothSeg")
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
st.sidebar.markdown(" ")
st.sidebar.image(self.image, use_column_width=False)
st.markdown(
"""