File size: 9,381 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""This file contains the definition of the discriminator."""

import functools
import math
from typing import Tuple

import torch
import torch.nn.functional as F

from .autoencoder import Conv2dSame


class BlurBlock(torch.nn.Module):
    def __init__(self, kernel: Tuple[int] = (1, 3, 3, 1)):
        """Initializes the blur block.

        Args:
            kernel -> Tuple[int]: The kernel size.
        """
        super().__init__()

        self.kernel_size = len(kernel)

        kernel = torch.tensor(kernel, dtype=torch.float32, requires_grad=False)
        kernel = kernel[None, :] * kernel[:, None]
        kernel /= kernel.sum()
        kernel = kernel.unsqueeze(0).unsqueeze(0)
        self.register_buffer("kernel", kernel)

    def calc_same_pad(self, i: int, k: int, s: int) -> int:
        """Calculates the same padding for the BlurBlock.

        Args:
            i -> int: Input size.
            k -> int: Kernel size.
            s -> int: Stride.

        Returns:
            pad -> int: The padding.
        """
        return max((math.ceil(i / s) - 1) * s + (k - 1) + 1 - i, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x -> torch.Tensor: The input tensor.

        Returns:
            out -> torch.Tensor: The output tensor.
        """
        ic, ih, iw = x.size()[-3:]
        pad_h = self.calc_same_pad(i=ih, k=self.kernel_size, s=2)
        pad_w = self.calc_same_pad(i=iw, k=self.kernel_size, s=2)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(
                x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
            )

        weight = self.kernel.expand(ic, -1, -1, -1)

        out = F.conv2d(input=x, weight=weight, stride=2, groups=x.shape[1])
        return out


class NLayerDiscriminatorv2(torch.nn.Module):
    def __init__(
        self,
        num_channels: int = 3,
        hidden_channels: int = 64,
        num_stages: int = 3,
        activation_fn: str = "leaky_relu",
        blur_resample: bool = False,
        blur_kernel_size: int = 4,
    ):
        """Initializes the NLayerDiscriminatorv2.

        Args:
            num_channels -> int: The number of input channels.
            hidden_channels -> int: The number of hidden channels.
            num_stages -> int: The number of stages.
            activation_fn -> str: The activation function.
            blur_resample -> bool: Whether to use blur resampling.
            blur_kernel_size -> int: The blur kernel size.
        """
        super().__init__()
        assert num_stages > 0, "Discriminator cannot have 0 stages"
        assert (not blur_resample) or (
            blur_kernel_size >= 3 and blur_kernel_size <= 5
        ), "Blur kernel size must be in [3,5] when sampling]"

        in_channel_mult = (1,) + tuple(map(lambda t: 2**t, range(num_stages)))
        init_kernel_size = 5
        if activation_fn == "leaky_relu":
            activation = functools.partial(torch.nn.LeakyReLU, negative_slope=0.1)
        else:
            activation = torch.nn.SiLU

        self.block_in = torch.nn.Sequential(
            Conv2dSame(num_channels, hidden_channels, kernel_size=init_kernel_size),
            activation(),
        )

        BLUR_KERNEL_MAP = {
            3: (1, 2, 1),
            4: (1, 3, 3, 1),
            5: (1, 4, 6, 4, 1),
        }

        discriminator_blocks = []
        for i_level in range(num_stages):
            in_channels = hidden_channels * in_channel_mult[i_level]
            out_channels = hidden_channels * in_channel_mult[i_level + 1]
            block = torch.nn.Sequential(
                Conv2dSame(
                    in_channels,
                    out_channels,
                    kernel_size=3,
                ),
                (
                    torch.nn.AvgPool2d(kernel_size=2, stride=2)
                    if not blur_resample
                    else BlurBlock(BLUR_KERNEL_MAP[blur_kernel_size])
                ),
                torch.nn.GroupNorm(32, out_channels),
                activation(),
            )
            discriminator_blocks.append(block)

        self.blocks = torch.nn.ModuleList(discriminator_blocks)

        self.pool = torch.nn.AdaptiveMaxPool2d((16, 16))

        self.to_logits = torch.nn.Sequential(
            Conv2dSame(out_channels, out_channels, 1),
            activation(),
            Conv2dSame(out_channels, 1, kernel_size=5),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x -> torch.Tensor: The input tensor.

        Returns:
            output -> torch.Tensor: The output tensor.
        """
        hidden_states = self.block_in(x)
        for block in self.blocks:
            hidden_states = block(hidden_states)

        hidden_states = self.pool(hidden_states)

        return self.to_logits(hidden_states)


class OriginalNLayerDiscriminator(torch.nn.Module):
    """Defines a PatchGAN discriminator like in Pix2Pix as used by Taming VQGAN
    --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
    """

    def __init__(
        self,
        num_channels: int = 3,
        hidden_channels: int = 64,
        num_stages: int = 3,
    ):
        """Initializes a PatchGAN discriminator.

        Args:
            num_channels -> int: The number of input channels.
            hidden_channels -> int: The number of hidden channels.
            num_stages -> int: The number of stages.
        """
        super(OriginalNLayerDiscriminator, self).__init__()
        norm_layer = torch.nn.BatchNorm2d

        sequence = [
            torch.nn.Conv2d(
                num_channels, hidden_channels, kernel_size=4, stride=2, padding=1
            ),
            torch.nn.LeakyReLU(0.2, True),
        ]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, num_stages):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            sequence += [
                torch.nn.Conv2d(
                    hidden_channels * nf_mult_prev,
                    hidden_channels * nf_mult,
                    kernel_size=4,
                    stride=2,
                    padding=1,
                    bias=False,
                ),
                norm_layer(hidden_channels * nf_mult),
                torch.nn.LeakyReLU(0.2, True),
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2**num_stages, 8)
        sequence += [
            torch.nn.Conv2d(
                hidden_channels * nf_mult_prev,
                hidden_channels * nf_mult,
                kernel_size=4,
                stride=1,
                padding=1,
                bias=False,
            ),
            norm_layer(hidden_channels * nf_mult),
            torch.nn.LeakyReLU(0.2, True),
        ]

        sequence += [
            torch.nn.Conv2d(
                hidden_channels * nf_mult, 1, kernel_size=4, stride=1, padding=1
            )
        ]  # output 1 channel prediction map
        self.main = torch.nn.Sequential(*sequence)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x -> torch.Tensor: The input tensor.

        Returns:
            output -> torch.Tensor: The output tensor.
        """
        return self.main(x)


if __name__ == "__main__":
    patch_discriminator_v2 = NLayerDiscriminatorv2(
        num_channels=3, hidden_channels=128, num_stages=3
    )
    patch_discriminator_v2_blur = NLayerDiscriminatorv2(
        num_channels=3, hidden_channels=128, num_stages=3, blur_resample=True
    )
    original_discriminiator = OriginalNLayerDiscriminator(
        num_channels=3, hidden_channels=128, num_stages=3
    )

    from torchinfo import summary

    print("Original Discriminator")
    summary(
        original_discriminiator,
        input_size=(1, 3, 256, 256),
        depth=3,
        col_names=(
            "input_size",
            "output_size",
            "num_params",
            "params_percent",
            "kernel_size",
            "mult_adds",
        ),
    )
    print("Patch Discriminator v2")
    summary(
        patch_discriminator_v2,
        input_size=(1, 3, 256, 256),
        depth=3,
        col_names=(
            "input_size",
            "output_size",
            "num_params",
            "params_percent",
            "kernel_size",
            "mult_adds",
        ),
    )
    print("Patch Discriminator v2 (blur)")
    summary(
        patch_discriminator_v2_blur,
        input_size=(1, 3, 256, 256),
        depth=3,
        col_names=(
            "input_size",
            "output_size",
            "num_params",
            "params_percent",
            "kernel_size",
            "mult_adds",
        ),
    )

    x = torch.randn((1, 3, 256, 256)).to(next(original_discriminiator.parameters()))

    out_original = original_discriminiator(x)
    out_patch_v2 = patch_discriminator_v2(x)
    out_patch_v2_blur = patch_discriminator_v2_blur(x)

    print(f"Input shape: {x.shape}")
    print(f"Patch Discriminator v2 output shape: {out_patch_v2.shape}")
    print(f"Patch Discriminator v2 (blur) output shape: {out_patch_v2_blur.shape}")
    print(f"Original Discriminator output shape: {out_original.shape}")