File size: 6,956 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""This file contains the definition of utility functions for GANs."""

import torch
import torch.nn.functional as F

from . import OriginalNLayerDiscriminator, NLayerDiscriminatorv2


def toggle_off_gradients(model: torch.nn.Module):
    """Toggles off gradients for all parameters in a model."""
    for param in model.parameters():
        param.requires_grad = False


def toggle_on_gradients(model: torch.nn.Module):
    """Toggles on gradients for all parameters in a model."""
    for param in model.parameters():
        param.requires_grad = True


def discriminator_weights_init(m):
    """Initialize weights for convolutions in the discriminator."""
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)


def adopt_weight(
    weight: float, global_step: int, threshold: int = 0, value: float = 0.0
) -> float:
    """If global_step is less than threshold, return value, else return weight."""
    if global_step < threshold:
        weight = value
    return weight


def compute_lecam_loss(
    logits_real_mean: torch.Tensor,
    logits_fake_mean: torch.Tensor,
    ema_logits_real_mean: torch.Tensor,
    ema_logits_fake_mean: torch.Tensor,
) -> torch.Tensor:
    """Computes the LeCam loss for the given average real and fake logits.

    Args:
        logits_real_mean -> torch.Tensor: The average real logits.
        logits_fake_mean -> torch.Tensor: The average fake logits.
        ema_logits_real_mean -> torch.Tensor: The EMA of the average real logits.
        ema_logits_fake_mean -> torch.Tensor: The EMA of the average fake logits.

    Returns:
        lecam_loss -> torch.Tensor: The LeCam loss.
    """
    lecam_loss = torch.mean(
        torch.pow(F.relu(logits_real_mean - ema_logits_fake_mean), 2)
    )
    lecam_loss += torch.mean(
        torch.pow(F.relu(ema_logits_real_mean - logits_fake_mean), 2)
    )
    return lecam_loss


def hinge_g_loss(logits_fake: torch.Tensor) -> torch.Tensor:
    """Computes the hinge loss for the generator given the fake logits.

    Args:
        logits_fake -> torch.Tensor: The fake logits.

    Returns:
        g_loss -> torch.Tensor: The hinge loss.
    """
    g_loss = -torch.mean(logits_fake)
    return g_loss


def hinge_d_loss(logits_real: torch.Tensor, logits_fake: torch.Tensor) -> torch.Tensor:
    """Computes the hinge loss for the discriminator given the real and fake logits.

    Args:
        logits_real -> torch.Tensor: The real logits.
        logits_fake -> torch.Tensor: The fake logits.

    Returns:
        d_loss -> torch.Tensor: The hinge loss.
    """
    loss_real = torch.mean(F.relu(1.0 - logits_real))
    loss_fake = torch.mean(F.relu(1.0 + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def sigmoid_cross_entropy_with_logits(
    logits: torch.Tensor, label: torch.Tensor
) -> torch.Tensor:
    """Credits to Magvit.
    We use a stable formulation that is equivalent to the one used in TensorFlow.
    The following derivation shows how we arrive at the formulation:

    .. math::
            z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
        = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
        = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
        = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
        = (1 - z) * x + log(1 + exp(-x))
        = x - x * z + log(1 + exp(-x))

    For x < 0, the following formula is more stable:
    .. math::
            x - x * z + log(1 + exp(-x))
        = log(exp(x)) - x * z + log(1 + exp(-x))
        = - x * z + log(1 + exp(x))

    We combine the two cases (x<0, x>=0) into one formula as follows:
    .. math::
        max(x, 0) - x * z + log(1 + exp(-abs(x)))
    """
    zeros = torch.zeros_like(logits)
    cond = logits >= zeros
    relu_logits = torch.where(cond, logits, zeros)
    neg_abs_logits = torch.where(cond, -logits, logits)
    loss = relu_logits - logits * label + torch.log1p(neg_abs_logits.exp())
    return loss


def non_saturating_d_loss(
    logits_real: torch.Tensor, logits_fake: torch.Tensor
) -> torch.Tensor:
    """Computes the non-saturating loss for the discriminator given the real and fake logits.

    Args:
        logits_real -> torch.Tensor: The real logits.
        logits_fake -> torch.Tensor: The fake logits.

    Returns:
        loss -> torch.Tensor: The non-saturating loss.
    """
    real_loss = torch.mean(
        sigmoid_cross_entropy_with_logits(
            logits_real, label=torch.ones_like(logits_real)
        )
    )
    fake_loss = torch.mean(
        sigmoid_cross_entropy_with_logits(
            logits_fake, label=torch.zeros_like(logits_fake)
        )
    )
    return torch.mean(real_loss) + torch.mean(fake_loss)


def non_saturating_g_loss(logits_fake: torch.Tensor) -> torch.Tensor:
    """Computes the non-saturating loss for the generator given the fake logits.

    Args:
        logits_fake -> torch.Tensor: The fake logits.

    Returns:
        loss -> torch.Tensor: The non-saturating loss.
    """
    return torch.mean(
        sigmoid_cross_entropy_with_logits(
            logits_fake, label=torch.ones_like(logits_fake)
        )
    )


def vanilla_d_loss(
    logits_real: torch.Tensor, logits_fake: torch.Tensor
) -> torch.Tensor:
    """Computes the vanilla loss for the discriminator given the real and fake logits.

    Args:
        logits_real -> torch.Tensor: The real logits.
        logits_fake -> torch.Tensor: The fake logits.

    Returns:
        loss -> torch.Tensor: The vanilla loss.
    """
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real))
        + torch.mean(torch.nn.functional.softplus(logits_fake))
    )
    return d_loss


def create_discriminator(discriminator_config) -> torch.nn.Module:
    """Creates a discriminator based on the given config.

    Args:
        discriminator_config: The config for the discriminator.

    Returns:
        discriminator -> torch.nn.Module: The discriminator.
    """
    if discriminator_config.name == "Original":
        return OriginalNLayerDiscriminator(
            num_channels=discriminator_config.num_channels,
            num_stages=discriminator_config.num_stages,
            hidden_channels=discriminator_config.hidden_channels,
        ).apply(discriminator_weights_init)
    elif discriminator_config.name == "VQGAN+Discriminator":
        return NLayerDiscriminatorv2(
            num_channels=discriminator_config.num_channels,
            num_stages=discriminator_config.num_stages,
            hidden_channels=discriminator_config.hidden_channels,
            blur_resample=discriminator_config.blur_resample,
            blur_kernel_size=discriminator_config.get("blur_kernel_size", 4),
        )
    else:
        raise ValueError(
            f"Discriminator {discriminator_config.name} is not implemented."
        )