File size: 26,546 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
from typing import List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
from torch import distributed as tdist, nn as nn
from torch.nn import functional as F

from math import sqrt
import math

from einops import rearrange, reduce, pack, unpack

import dist


def mult_along_first_dims(x, y):
    """
    returns x * y elementwise along the leading dimensions of y
    """
    ndim_to_expand = x.ndim - y.ndim
    for _ in range(ndim_to_expand):
        y = y.unsqueeze(-1)
    return x * y


def masked_mean(x, m):
    """
    takes the mean of the elements of x that are not masked
    the mean is taken along the shared leading dims of m
    equivalent to: x[m].mean(tuple(range(m.ndim)))

    The benefit of using masked_mean rather than using
    tensor indexing is that masked_mean is much faster
    for torch-compile on batches.

    The drawback is larger floating point errors
    """
    x = mult_along_first_dims(x, m)
    x = x / m.sum()
    return x.sum(tuple(range(m.ndim)))


def entropy_loss(
    logits,
    mask=None,
    temperature=0.01,
    sample_minimization_weight=1.0,
    batch_maximization_weight=1.0,
    eps=1e-5,
):
    """
    Entropy loss of unnormalized logits

    logits: Affinities are over the last dimension

    https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
    LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
    """
    probs = F.softmax(logits / temperature, -1)
    log_probs = F.log_softmax(logits / temperature + eps, -1)
    if mask is not None:
        # avg_probs = probs[mask].mean(tuple(range(probs.ndim - 1)))
        # avg_probs = einx.mean("... D -> D", probs[mask])
        avg_probs = reduce(masked_mean(probs, mask), "... D -> D", "mean")
        # avg_probs = einx.mean("... D -> D", avg_probs)
    else:
        avg_probs = reduce(probs, "... D -> D", "mean")
    avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))

    sample_entropy = -torch.sum(probs * log_probs, -1)
    if mask is not None:
        # sample_entropy = sample_entropy[mask].mean()
        sample_entropy = masked_mean(sample_entropy, mask).mean()
    else:
        sample_entropy = torch.mean(sample_entropy)

    loss = (sample_minimization_weight * sample_entropy) - (
        batch_maximization_weight * avg_entropy
    )

    return sample_entropy, avg_entropy, loss


class LFQ(nn.Module):
    # VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25
    def __init__(
        self,
        codebook_size,
        Cvae,
        using_znorm=False,
        beta: float = 0.25,
        default_qresi_counts=0,
        v_patch_nums=None,
        quant_resi=0.5,
        share_quant_resi=4,
        num_latent_tokens=256,
        codebook_drop=0.0,
        scale=1,
        sample_minimization_weight=1.0,
        batch_maximization_weight=1.0,
        entropy_weight=0.1,
        soft_entropy=True,
        # share_quant_resi: args.qsr
    ):
        super().__init__()
        self.Cvae: int = Cvae
        self.vocab_size: int = 2**self.Cvae
        assert self.vocab_size == codebook_size
        self.using_znorm: bool = using_znorm
        self.v_patch_nums: Tuple[int] = v_patch_nums
        self.num_latent_tokens = num_latent_tokens
        self.entropy_weight = entropy_weight
        self.soft_entropy = soft_entropy
        self.persample_entropy_compute = "analytical"

        self.quant_resi_ratio = quant_resi
        if share_quant_resi == 0:  # non-shared: \phi_{1 to K} for K scales
            self.quant_resi = PhiNonShared(
                [
                    (Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity())
                    for _ in range(default_qresi_counts or len(self.v_patch_nums))
                ]
            )
        elif share_quant_resi == 1:  # fully shared: only a single \phi for K scales
            self.quant_resi = PhiShared(
                Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()
            )
        else:  # partially shared: \phi_{1 to share_quant_resi} for K scales
            self.quant_resi = PhiPartiallyShared(
                nn.ModuleList(
                    [
                        (
                            Phi(Cvae, quant_resi)
                            if abs(quant_resi) > 1e-6
                            else nn.Identity()
                        )
                        for _ in range(share_quant_resi)
                    ]
                )
            )

        self.register_buffer(
            "ema_vocab_hit_SV",
            torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0),
        )
        self.record_hit = 0

        self.register_buffer("mask", 2 ** torch.arange(self.Cvae), persistent=False)

        self.beta: float = beta

        self.codebook_drop = codebook_drop

        scaler = scale ** torch.arange(len(self.v_patch_nums))
        if using_znorm:
            scaler = scaler / sqrt(self.Cvae)

        self.register_buffer("scaler", scaler)
        print("scale is", scaler)

        # for entropy loss
        self.sample_minimization_weight = sample_minimization_weight
        self.batch_maximization_weight = batch_maximization_weight

        # codes
        all_codes = torch.arange(codebook_size)
        bits = self.indices_to_bits(all_codes)
        codebook = bits * 2.0 - 1.0

        self.register_buffer("codebook", codebook, persistent=False)

        # only used for progressive training of VAR (not supported yet, will be tested and supported in the future)
        self.prog_si = -1  # progressive training: not supported yet, prog_si always -1

    def extra_repr(self) -> str:
        return f"{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta}  |  S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}"

        # ===================== `forward` is only used in VAE training =====================

    def forward(
        self, f_BChw: torch.Tensor, ret_usages=False, dropout=None
    ) -> Tuple[torch.Tensor, List[float], torch.Tensor]:
        dtype = f_BChw.dtype
        if dtype != torch.float32:
            f_BChw = f_BChw.float()
        B, C, H, W = f_BChw.shape
        if self.using_znorm:
            f_BChw = F.normalize(f_BChw, dim=1)
        f_no_grad = f_BChw.detach()

        f_rest = f_no_grad.clone()
        f_hat = torch.zeros_like(f_rest)
        # x = f_BChw

        with torch.cuda.amp.autocast(enabled=False):
            mean_vq_loss: torch.Tensor = 0.0
            mean_commit_loss: torch.Tensor = 0.0
            mean_entropy_loss: torch.Tensor = 0.0
            vocab_hit_V = torch.zeros(
                self.vocab_size, dtype=torch.float, device=f_BChw.device
            )
            SN = len(self.v_patch_nums)

            if self.training:
                max_n = len(self.v_patch_nums) + 1
                n_quantizers = torch.ones((B,)) * max_n
                n_dropout = int(B * self.codebook_drop)
                n_quantizers[:n_dropout] = dropout[:n_dropout]
                n_quantizers = n_quantizers.to(f_BChw.device)
            else:
                n_quantizers = torch.ones((B,)) * (self.v_patch_nums + 1)

            for si, pn in enumerate(self.v_patch_nums):  # from small to large
                codebook_value = (
                    self.scaler[si].to(device=f_BChw.device, dtype=torch.float).detach()
                )
                # find the nearest embedding
                rest_NC = (
                    F.interpolate(f_rest, size=(pn, pn), mode="area")
                    .permute(0, 2, 3, 1)
                    .reshape(-1, C)
                    if (si != SN - 1) or pn != int(sqrt(self.num_latent_tokens))
                    else f_rest.permute(0, 2, 3, 1).reshape(-1, C)
                )
                # rest_NC = f_rest.permute(0, 2, 3, 1).reshape(-1, C)
                d_no_grad = torch.where(rest_NC > 0, codebook_value, -codebook_value)
                idx_N = self.bits_to_indices((d_no_grad > 0))

                hit_V = idx_N.bincount(minlength=self.vocab_size).float()
                if self.training:
                    handler = tdist.all_reduce(hit_V, async_op=True)
                # calc loss
                idx_Bhw = idx_N.view(B, pn, pn)

                h_BChw = (
                    F.interpolate(
                        self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2),
                        size=(H, W),
                        mode="bicubic",
                    ).contiguous()
                    if (si != SN - 1)
                    else self.indices_to_bits(idx_Bhw, si)
                    .permute(0, 3, 1, 2)
                    .contiguous()
                )
                # h_BChw = self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2).contiguous()
                h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)

                # x = f_rest.clone().permute(0, 2, 3, 1)
                x = rearrange((f_BChw - f_hat.detach()), "b d h w -> b (h w) 1 d")

                mask = (
                    torch.full((B,), fill_value=si, device=h_BChw.device) < n_quantizers
                )[:, None, None, None].int()
                f_hat = f_hat + h_BChw * mask

                f_rest -= h_BChw
                if self.training:
                    handler.wait()
                    if self.record_hit == 0:
                        self.ema_vocab_hit_SV[si].copy_(hit_V)
                    elif self.record_hit < 100:
                        self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1))
                    else:
                        self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01))
                    self.record_hit += 1
                vocab_hit_V.add_(hit_V)
                ratio = mask.sum() / B

                codebook = self.codebook * codebook_value

                if self.soft_entropy:
                    per_sample_entropy, codebook_entropy, avg_prob = (
                        self.soft_entropy_loss(x, si, codebook, mask.squeeze())
                    )
                    entropy_aux_loss = (
                        self.sample_minimization_weight * per_sample_entropy
                    ) - (self.batch_maximization_weight * codebook_entropy)
                else:
                    logits = 2 * torch.einsum("... i d, j d -> ... i j", x, codebook)
                    # the same as euclidean distance up to a constant
                    per_sample_entropy, codebook_entropy, entropy_aux_loss = (
                        entropy_loss(
                            logits=logits,
                            mask=mask.squeeze(),
                            sample_minimization_weight=self.sample_minimization_weight,
                            batch_maximization_weight=self.batch_maximization_weight,
                        )
                    )
                # F.mse_loss(f_hat, f_no_grad, reduction="none").mul_(mask).mean() / ratio
                mean_vq_loss += (
                    F.mse_loss(f_hat, f_no_grad, reduction="none").mul_(mask).mean()
                    / ratio
                )
                mean_commit_loss += (
                    F.mse_loss(f_hat.data, f_BChw, reduction="none")
                    .mul_(mask)
                    .mul_(self.beta / ratio)
                    .mean()
                )

                entropy_weight = self.entropy_weight / ratio

                mean_entropy_loss += entropy_aux_loss.mul_(entropy_weight)
                # x -= h_BChw.detach()

            mean_vq_loss *= 1.0 / SN
            mean_commit_loss *= 1.0 / SN
            mean_entropy_loss *= 1.0 / SN
            f_hat = (f_hat.data - f_no_grad).add_(f_BChw)

        margin = (
            tdist.get_world_size()
            * (f_BChw.numel() / f_BChw.shape[1])
            / self.vocab_size
            * 0.08
        )
        # margin = pn*pn / 100
        if ret_usages:
            usages = [
                (self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100
                for si, pn in enumerate(self.v_patch_nums)
            ]
        else:
            usages = None
        return f_hat, usages, mean_vq_loss, mean_commit_loss, mean_entropy_loss

    # ===================== `forward` is only used in VAE training =====================

    def bits_to_indices(self, bits):
        """
        bits: bool tensor of big endian bits, where the last dimension is the bit dimension

        returns indices, which are long integers from 0 to self.codebook_size
        """
        assert bits.shape[-1] == self.Cvae
        indices = 2 ** torch.arange(
            0,
            self.Cvae,
            1,
            dtype=torch.long,
            device=bits.device,
        )
        return (bits * indices).sum(-1)

    def indices_to_bits(self, x, si=None):
        """
        x: long tensor of indices

        returns big endian bits
        """
        mask = 2 ** torch.arange(self.Cvae, device=x.device, dtype=torch.long)
        # x is now big endian bits, the last dimension being the bits
        x = (x.unsqueeze(-1) & mask) != 0
        if si == None:
            return x
        return torch.where(x, self.scaler[si], -self.scaler[si])

    def soft_entropy_loss(self, z, si, codebook, mask=None):
        if mask != None:
            z = z[mask]
        distance = -2 * torch.einsum("... g c, d c ->... g d", z, codebook)
        prob = (-distance).softmax(dim=-1)
        if self.persample_entropy_compute == "analytical":
            p = torch.sigmoid(-4 * z * (self.scaler[si]))
            prob = torch.stack([p, 1 - p], dim=-1)
            per_sample_entropy = (
                self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
            )
        else:
            per_sample_entropy = (
                self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
            )

        # macro average of the probability of each subgroup
        avg_prob = reduce(prob, "... g d ->g d", "mean")
        codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)

        # the approximation of the entropy is the sum of the entropy of each subgroup
        return per_sample_entropy, codebook_entropy.sum(), avg_prob

    def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
        if normalize:
            probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
        else:
            probs = count
        H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
        return H

    def embed_to_fhat(
        self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False
    ) -> Union[List[torch.Tensor], torch.Tensor]:
        ls_f_hat_BChw = []
        B = ms_h_BChw[0].shape[0]
        H = W = self.v_patch_nums[-1]
        SN = len(self.v_patch_nums)
        if all_to_max_scale:
            f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32)
            for si, pn in enumerate(self.v_patch_nums):  # from small to large
                h_BChw = ms_h_BChw[si]
                if si < len(self.v_patch_nums) - 1:
                    h_BChw = F.interpolate(h_BChw, size=(H, W), mode="bicubic")
                h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)
                f_hat.add_(h_BChw)
                if last_one:
                    ls_f_hat_BChw = f_hat
                else:
                    ls_f_hat_BChw.append(f_hat.clone())
        else:
            # WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above)
            # WARNING: this should only be used for experimental purpose
            f_hat = ms_h_BChw[0].new_zeros(
                B,
                self.Cvae,
                self.v_patch_nums[0],
                self.v_patch_nums[0],
                dtype=torch.float32,
            )
            for si, pn in enumerate(self.v_patch_nums):  # from small to large
                f_hat = F.interpolate(f_hat, size=(pn, pn), mode="bicubic")
                h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si])
                f_hat.add_(h_BChw)
                if last_one:
                    ls_f_hat_BChw = f_hat
                else:
                    ls_f_hat_BChw.append(f_hat)

        return ls_f_hat_BChw

    def f_to_idxBl_or_fhat(
        self,
        f_BChw: torch.Tensor,
        to_fhat: bool,
        v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None,
    ) -> List[
        Union[torch.Tensor, torch.LongTensor]
    ]:  # z_BChw is the feature from inp_img_no_grad
        B, C, H, W = f_BChw.shape
        if self.using_znorm:
            f_BChw = F.normalize(f_BChw, dim=1)
        f_no_grad = f_BChw.detach()
        f_rest = f_no_grad.clone()
        f_hat = torch.zeros_like(f_rest)

        f_hat_or_idx_Bl: List[torch.Tensor] = []

        patch_hws = [
            (pn, pn) if isinstance(pn, int) else (pn[0], pn[1])
            for pn in (v_patch_nums or self.v_patch_nums)
        ]  # from small to large
        # assert patch_hws[-1][0] == H and patch_hws[-1][1] == W, f'{patch_hws[-1]=} != ({H=}, {W=})'

        SN = len(patch_hws)
        for si, (ph, pw) in enumerate(patch_hws):  # from small to large
            codebook_value = (
                self.scaler[si].to(device=f_BChw.device, dtype=torch.float).detach()
            )
            if 0 <= self.prog_si < si:
                break  # progressive training: not supported yet, prog_si always -1
            # find the nearest embedding
            z_NC = (
                F.interpolate(f_rest, size=(ph, pw), mode="area")
                .permute(0, 2, 3, 1)
                .reshape(-1, C)
                if (si != SN - 1) or ph != 16
                else f_rest.permute(0, 2, 3, 1).reshape(-1, C)
            )

            d_no_grad = torch.where(z_NC > 0, codebook_value, -codebook_value)
            idx_N = self.bits_to_indices((d_no_grad > 0))

            idx_Bhw = idx_N.view(B, ph, pw)
            h_BChw = (
                F.interpolate(
                    self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2),
                    size=(H, W),
                    mode="bicubic",
                ).contiguous()
                if (si != SN - 1)
                else self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2).contiguous()
            )
            h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)
            f_hat.add_(h_BChw)
            f_rest.sub_(h_BChw)
            f_hat_or_idx_Bl.append(
                f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw)
            )

        return f_hat_or_idx_Bl

    # ===================== idxBl_to_var_input: only used in VAR training, for getting teacher-forcing input =====================
    def idxBl_to_var_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor:
        next_scales = []
        B = gt_ms_idx_Bl[0].shape[0]
        C = self.Cvae
        H = W = self.v_patch_nums[-1]
        SN = len(self.v_patch_nums)

        f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32)
        pn_next: int = self.v_patch_nums[0]
        for si in range(SN - 1):
            if self.prog_si == 0 or (0 <= self.prog_si - 1 < si):
                break  # progressive training: not supported yet, prog_si always -1
            h_BChw = F.interpolate(
                self.embedding(gt_ms_idx_Bl[si])
                .transpose_(1, 2)
                .view(B, C, pn_next, pn_next),
                size=(H, W),
                mode="bicubic",
            )
            f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw))
            pn_next = self.v_patch_nums[si + 1]
            next_scales.append(
                F.interpolate(f_hat, size=(pn_next, pn_next), mode="area")
                .view(B, C, -1)
                .transpose(1, 2)
            )
        return (
            torch.cat(next_scales, dim=1) if len(next_scales) else None
        )  # cat BlCs to BLC, this should be float32

    # ===================== get_next_autoregressive_input: only used in VAR inference, for getting next step's input =====================
    def get_next_autoregressive_input(
        self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor
    ) -> Tuple[Optional[torch.Tensor], torch.Tensor]:  # only used in VAR inference
        HW = self.v_patch_nums[-1]
        if si != SN - 1:
            h = self.quant_resi[si / (SN - 1)](
                F.interpolate(h_BChw, size=(HW, HW), mode="bicubic")
            )  # conv after upsample
            f_hat.add_(h)
            return f_hat, F.interpolate(
                f_hat,
                size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]),
                mode="area",
            )
        else:
            h = self.quant_resi[si / (SN - 1)](h_BChw)
            f_hat.add_(h)
            return f_hat, f_hat


class Phi(nn.Conv2d):
    def __init__(self, embed_dim, quant_resi):
        ks = 3
        super().__init__(
            in_channels=embed_dim,
            out_channels=embed_dim,
            kernel_size=ks,
            stride=1,
            padding=ks // 2,
        )
        self.resi_ratio = abs(quant_resi)

    def forward(self, h_BChw):
        return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(
            self.resi_ratio
        )


class PhiShared(nn.Module):
    def __init__(self, qresi: Phi):
        super().__init__()
        self.qresi: Phi = qresi

    def __getitem__(self, _) -> Phi:
        return self.qresi


class PhiPartiallyShared(nn.Module):
    def __init__(self, qresi_ls: nn.ModuleList):
        super().__init__()
        self.qresi_ls = qresi_ls
        K = len(qresi_ls)
        self.ticks = (
            np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K)
            if K == 4
            else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K)
        )

    def __getitem__(self, at_from_0_to_1: float) -> Phi:
        return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()]

    def extra_repr(self) -> str:
        return f"ticks={self.ticks}"


class PhiNonShared(nn.ModuleList):
    def __init__(self, qresi: List):
        super().__init__(qresi)
        # self.qresi = qresi
        K = len(qresi)
        self.ticks = (
            np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K)
            if K == 4
            else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K)
        )

    def __getitem__(self, at_from_0_to_1: float) -> Phi:
        return super().__getitem__(
            np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()
        )

    def extra_repr(self) -> str:
        return f"ticks={self.ticks}"


def schedule(ratio, total_unknown, method="cosine"):
    """Generates a mask rate by scheduling mask functions R.

    Given a ratio in [0, 1), we generate a masking ratio from (0, 1]. During
    training, the input ratio is uniformly sampled; during inference, the input
    ratio is based on the step number divided by the total iteration number: t/T.
    Based on experiements, we find that masking more in training helps.
    Args:
        ratio: The uniformly sampled ratio [0, 1) as input.
        total_unknown: The total number of tokens that can be masked out. For
        example, in MaskGIT, total_unknown = 256 for 256x256 images and 1024 for
        512x512 images.
    method: implemented functions are ["uniform", "cosine", "pow", "log", "exp"]
        "pow2.5" represents x^2.5

    Returns:
        The mask rate (float).
    """
    if method == "uniform":
        mask_ratio = 1.0 - ratio
    elif "pow" in method:
        exponent = float(method.replace("pow", ""))
        mask_ratio = 1.0 - ratio**exponent
    elif method == "cosine":
        mask_ratio = np.cos(math.pi / 2.0 * ratio)
    elif method == "log":
        mask_ratio = -np.log2(ratio) / np.log2(total_unknown)
    elif method == "exp":
        mask_ratio = 1 - np.exp2(-np.log2(total_unknown) * (1 - ratio))
    # Clamps mask into [epsilon, 1)
    mask_ratio = np.clip(mask_ratio, 0, 1.0)
    return mask_ratio


if __name__ == "__main__":

    batch_size = 4
    seq_len = 16
    num_classes = 4096
    # # Generate random logits and integer mask
    # logits = torch.randn(batch_size, seq_len,seq_len, num_classes)
    mask = torch.ones(batch_size, dtype=torch.int)

    # # Calculate entropy loss
    # sample_entropy, avg_entropy, loss = entropy_loss(
    #     logits,
    #     mask=mask,
    #     sample_minimization_weight=1.0,
    #     batch_maximization_weight=1.0,
    # )

    # # Output results
    # print("Sample Entropy for mask:", sample_entropy)
    # print("Average Entropy for mask:", avg_entropy)
    # print("Entropy Loss for mask:", loss)

    # # Calculate entropy loss
    # sample_entropy, avg_entropy, loss = entropy_loss(
    #     logits,
    #     sample_minimization_weight=1.0,
    #     batch_maximization_weight=1.0,
    # )

    # # Output results
    # print("Sample Entropy:", sample_entropy)
    # print("Average Entropy:", avg_entropy)
    # print("Entropy Loss:", loss)
    quantizer = LFQ(
        4096,
        12,
        using_znorm=False,
        v_patch_nums=[1, 2, 3, 4, 5, 6, 8, 10, 12, 16],
    )

    z = torch.randn(batch_size, seq_len * seq_len, 1, 12)

    for i in range(10):

        codebook = quantizer.codebook * quantizer.scaler[i]
        logits = 2 * torch.einsum("... i d, j d -> ... i j", z, codebook)

        per_sample_entropy, codebook_entropy, avg_prob = quantizer.soft_entropy_loss(
            z, i, codebook, mask
        )
        print("Soft Sample Entropy :", per_sample_entropy)
        print("Soft codebook Entropy:", codebook_entropy)
        print("Soft Entropy Loss", per_sample_entropy - codebook_entropy)

        sample_entropy, avg_entropy, loss = entropy_loss(
            logits,
            mask=mask,
            sample_minimization_weight=1.0,
            batch_maximization_weight=1.0,
        )
        print("Sample Entropy :", sample_entropy)
        print("codebook Entropy:", avg_entropy)
        print("Entropy Loss", loss)

    image_feats = torch.randn(
        2, 12, 16, 16
    )  # 16 is dim, must be power of 2 of codebook_size

    dropout_rand = torch.randint(3, len([1, 2, 3, 4, 5, 6, 8, 10, 12, 16]) + 1, (2,))

    quantized, usgae, loss = quantizer(
        image_feats, ret_usages=True, dropout=dropout_rand
    )  # you may want to experiment with temperature

    assert image_feats.shape == quantized.shape