File size: 26,546 Bytes
14ce5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from torch import distributed as tdist, nn as nn
from torch.nn import functional as F
from math import sqrt
import math
from einops import rearrange, reduce, pack, unpack
import dist
def mult_along_first_dims(x, y):
"""
returns x * y elementwise along the leading dimensions of y
"""
ndim_to_expand = x.ndim - y.ndim
for _ in range(ndim_to_expand):
y = y.unsqueeze(-1)
return x * y
def masked_mean(x, m):
"""
takes the mean of the elements of x that are not masked
the mean is taken along the shared leading dims of m
equivalent to: x[m].mean(tuple(range(m.ndim)))
The benefit of using masked_mean rather than using
tensor indexing is that masked_mean is much faster
for torch-compile on batches.
The drawback is larger floating point errors
"""
x = mult_along_first_dims(x, m)
x = x / m.sum()
return x.sum(tuple(range(m.ndim)))
def entropy_loss(
logits,
mask=None,
temperature=0.01,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
eps=1e-5,
):
"""
Entropy loss of unnormalized logits
logits: Affinities are over the last dimension
https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
"""
probs = F.softmax(logits / temperature, -1)
log_probs = F.log_softmax(logits / temperature + eps, -1)
if mask is not None:
# avg_probs = probs[mask].mean(tuple(range(probs.ndim - 1)))
# avg_probs = einx.mean("... D -> D", probs[mask])
avg_probs = reduce(masked_mean(probs, mask), "... D -> D", "mean")
# avg_probs = einx.mean("... D -> D", avg_probs)
else:
avg_probs = reduce(probs, "... D -> D", "mean")
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))
sample_entropy = -torch.sum(probs * log_probs, -1)
if mask is not None:
# sample_entropy = sample_entropy[mask].mean()
sample_entropy = masked_mean(sample_entropy, mask).mean()
else:
sample_entropy = torch.mean(sample_entropy)
loss = (sample_minimization_weight * sample_entropy) - (
batch_maximization_weight * avg_entropy
)
return sample_entropy, avg_entropy, loss
class LFQ(nn.Module):
# VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25
def __init__(
self,
codebook_size,
Cvae,
using_znorm=False,
beta: float = 0.25,
default_qresi_counts=0,
v_patch_nums=None,
quant_resi=0.5,
share_quant_resi=4,
num_latent_tokens=256,
codebook_drop=0.0,
scale=1,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
entropy_weight=0.1,
soft_entropy=True,
# share_quant_resi: args.qsr
):
super().__init__()
self.Cvae: int = Cvae
self.vocab_size: int = 2**self.Cvae
assert self.vocab_size == codebook_size
self.using_znorm: bool = using_znorm
self.v_patch_nums: Tuple[int] = v_patch_nums
self.num_latent_tokens = num_latent_tokens
self.entropy_weight = entropy_weight
self.soft_entropy = soft_entropy
self.persample_entropy_compute = "analytical"
self.quant_resi_ratio = quant_resi
if share_quant_resi == 0: # non-shared: \phi_{1 to K} for K scales
self.quant_resi = PhiNonShared(
[
(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity())
for _ in range(default_qresi_counts or len(self.v_patch_nums))
]
)
elif share_quant_resi == 1: # fully shared: only a single \phi for K scales
self.quant_resi = PhiShared(
Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()
)
else: # partially shared: \phi_{1 to share_quant_resi} for K scales
self.quant_resi = PhiPartiallyShared(
nn.ModuleList(
[
(
Phi(Cvae, quant_resi)
if abs(quant_resi) > 1e-6
else nn.Identity()
)
for _ in range(share_quant_resi)
]
)
)
self.register_buffer(
"ema_vocab_hit_SV",
torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0),
)
self.record_hit = 0
self.register_buffer("mask", 2 ** torch.arange(self.Cvae), persistent=False)
self.beta: float = beta
self.codebook_drop = codebook_drop
scaler = scale ** torch.arange(len(self.v_patch_nums))
if using_znorm:
scaler = scaler / sqrt(self.Cvae)
self.register_buffer("scaler", scaler)
print("scale is", scaler)
# for entropy loss
self.sample_minimization_weight = sample_minimization_weight
self.batch_maximization_weight = batch_maximization_weight
# codes
all_codes = torch.arange(codebook_size)
bits = self.indices_to_bits(all_codes)
codebook = bits * 2.0 - 1.0
self.register_buffer("codebook", codebook, persistent=False)
# only used for progressive training of VAR (not supported yet, will be tested and supported in the future)
self.prog_si = -1 # progressive training: not supported yet, prog_si always -1
def extra_repr(self) -> str:
return f"{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}"
# ===================== `forward` is only used in VAE training =====================
def forward(
self, f_BChw: torch.Tensor, ret_usages=False, dropout=None
) -> Tuple[torch.Tensor, List[float], torch.Tensor]:
dtype = f_BChw.dtype
if dtype != torch.float32:
f_BChw = f_BChw.float()
B, C, H, W = f_BChw.shape
if self.using_znorm:
f_BChw = F.normalize(f_BChw, dim=1)
f_no_grad = f_BChw.detach()
f_rest = f_no_grad.clone()
f_hat = torch.zeros_like(f_rest)
# x = f_BChw
with torch.cuda.amp.autocast(enabled=False):
mean_vq_loss: torch.Tensor = 0.0
mean_commit_loss: torch.Tensor = 0.0
mean_entropy_loss: torch.Tensor = 0.0
vocab_hit_V = torch.zeros(
self.vocab_size, dtype=torch.float, device=f_BChw.device
)
SN = len(self.v_patch_nums)
if self.training:
max_n = len(self.v_patch_nums) + 1
n_quantizers = torch.ones((B,)) * max_n
n_dropout = int(B * self.codebook_drop)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(f_BChw.device)
else:
n_quantizers = torch.ones((B,)) * (self.v_patch_nums + 1)
for si, pn in enumerate(self.v_patch_nums): # from small to large
codebook_value = (
self.scaler[si].to(device=f_BChw.device, dtype=torch.float).detach()
)
# find the nearest embedding
rest_NC = (
F.interpolate(f_rest, size=(pn, pn), mode="area")
.permute(0, 2, 3, 1)
.reshape(-1, C)
if (si != SN - 1) or pn != int(sqrt(self.num_latent_tokens))
else f_rest.permute(0, 2, 3, 1).reshape(-1, C)
)
# rest_NC = f_rest.permute(0, 2, 3, 1).reshape(-1, C)
d_no_grad = torch.where(rest_NC > 0, codebook_value, -codebook_value)
idx_N = self.bits_to_indices((d_no_grad > 0))
hit_V = idx_N.bincount(minlength=self.vocab_size).float()
if self.training:
handler = tdist.all_reduce(hit_V, async_op=True)
# calc loss
idx_Bhw = idx_N.view(B, pn, pn)
h_BChw = (
F.interpolate(
self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2),
size=(H, W),
mode="bicubic",
).contiguous()
if (si != SN - 1)
else self.indices_to_bits(idx_Bhw, si)
.permute(0, 3, 1, 2)
.contiguous()
)
# h_BChw = self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2).contiguous()
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)
# x = f_rest.clone().permute(0, 2, 3, 1)
x = rearrange((f_BChw - f_hat.detach()), "b d h w -> b (h w) 1 d")
mask = (
torch.full((B,), fill_value=si, device=h_BChw.device) < n_quantizers
)[:, None, None, None].int()
f_hat = f_hat + h_BChw * mask
f_rest -= h_BChw
if self.training:
handler.wait()
if self.record_hit == 0:
self.ema_vocab_hit_SV[si].copy_(hit_V)
elif self.record_hit < 100:
self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1))
else:
self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01))
self.record_hit += 1
vocab_hit_V.add_(hit_V)
ratio = mask.sum() / B
codebook = self.codebook * codebook_value
if self.soft_entropy:
per_sample_entropy, codebook_entropy, avg_prob = (
self.soft_entropy_loss(x, si, codebook, mask.squeeze())
)
entropy_aux_loss = (
self.sample_minimization_weight * per_sample_entropy
) - (self.batch_maximization_weight * codebook_entropy)
else:
logits = 2 * torch.einsum("... i d, j d -> ... i j", x, codebook)
# the same as euclidean distance up to a constant
per_sample_entropy, codebook_entropy, entropy_aux_loss = (
entropy_loss(
logits=logits,
mask=mask.squeeze(),
sample_minimization_weight=self.sample_minimization_weight,
batch_maximization_weight=self.batch_maximization_weight,
)
)
# F.mse_loss(f_hat, f_no_grad, reduction="none").mul_(mask).mean() / ratio
mean_vq_loss += (
F.mse_loss(f_hat, f_no_grad, reduction="none").mul_(mask).mean()
/ ratio
)
mean_commit_loss += (
F.mse_loss(f_hat.data, f_BChw, reduction="none")
.mul_(mask)
.mul_(self.beta / ratio)
.mean()
)
entropy_weight = self.entropy_weight / ratio
mean_entropy_loss += entropy_aux_loss.mul_(entropy_weight)
# x -= h_BChw.detach()
mean_vq_loss *= 1.0 / SN
mean_commit_loss *= 1.0 / SN
mean_entropy_loss *= 1.0 / SN
f_hat = (f_hat.data - f_no_grad).add_(f_BChw)
margin = (
tdist.get_world_size()
* (f_BChw.numel() / f_BChw.shape[1])
/ self.vocab_size
* 0.08
)
# margin = pn*pn / 100
if ret_usages:
usages = [
(self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100
for si, pn in enumerate(self.v_patch_nums)
]
else:
usages = None
return f_hat, usages, mean_vq_loss, mean_commit_loss, mean_entropy_loss
# ===================== `forward` is only used in VAE training =====================
def bits_to_indices(self, bits):
"""
bits: bool tensor of big endian bits, where the last dimension is the bit dimension
returns indices, which are long integers from 0 to self.codebook_size
"""
assert bits.shape[-1] == self.Cvae
indices = 2 ** torch.arange(
0,
self.Cvae,
1,
dtype=torch.long,
device=bits.device,
)
return (bits * indices).sum(-1)
def indices_to_bits(self, x, si=None):
"""
x: long tensor of indices
returns big endian bits
"""
mask = 2 ** torch.arange(self.Cvae, device=x.device, dtype=torch.long)
# x is now big endian bits, the last dimension being the bits
x = (x.unsqueeze(-1) & mask) != 0
if si == None:
return x
return torch.where(x, self.scaler[si], -self.scaler[si])
def soft_entropy_loss(self, z, si, codebook, mask=None):
if mask != None:
z = z[mask]
distance = -2 * torch.einsum("... g c, d c ->... g d", z, codebook)
prob = (-distance).softmax(dim=-1)
if self.persample_entropy_compute == "analytical":
p = torch.sigmoid(-4 * z * (self.scaler[si]))
prob = torch.stack([p, 1 - p], dim=-1)
per_sample_entropy = (
self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
)
else:
per_sample_entropy = (
self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
)
# macro average of the probability of each subgroup
avg_prob = reduce(prob, "... g d ->g d", "mean")
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
# the approximation of the entropy is the sum of the entropy of each subgroup
return per_sample_entropy, codebook_entropy.sum(), avg_prob
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
if normalize:
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
else:
probs = count
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
return H
def embed_to_fhat(
self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False
) -> Union[List[torch.Tensor], torch.Tensor]:
ls_f_hat_BChw = []
B = ms_h_BChw[0].shape[0]
H = W = self.v_patch_nums[-1]
SN = len(self.v_patch_nums)
if all_to_max_scale:
f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32)
for si, pn in enumerate(self.v_patch_nums): # from small to large
h_BChw = ms_h_BChw[si]
if si < len(self.v_patch_nums) - 1:
h_BChw = F.interpolate(h_BChw, size=(H, W), mode="bicubic")
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)
f_hat.add_(h_BChw)
if last_one:
ls_f_hat_BChw = f_hat
else:
ls_f_hat_BChw.append(f_hat.clone())
else:
# WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above)
# WARNING: this should only be used for experimental purpose
f_hat = ms_h_BChw[0].new_zeros(
B,
self.Cvae,
self.v_patch_nums[0],
self.v_patch_nums[0],
dtype=torch.float32,
)
for si, pn in enumerate(self.v_patch_nums): # from small to large
f_hat = F.interpolate(f_hat, size=(pn, pn), mode="bicubic")
h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si])
f_hat.add_(h_BChw)
if last_one:
ls_f_hat_BChw = f_hat
else:
ls_f_hat_BChw.append(f_hat)
return ls_f_hat_BChw
def f_to_idxBl_or_fhat(
self,
f_BChw: torch.Tensor,
to_fhat: bool,
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None,
) -> List[
Union[torch.Tensor, torch.LongTensor]
]: # z_BChw is the feature from inp_img_no_grad
B, C, H, W = f_BChw.shape
if self.using_znorm:
f_BChw = F.normalize(f_BChw, dim=1)
f_no_grad = f_BChw.detach()
f_rest = f_no_grad.clone()
f_hat = torch.zeros_like(f_rest)
f_hat_or_idx_Bl: List[torch.Tensor] = []
patch_hws = [
(pn, pn) if isinstance(pn, int) else (pn[0], pn[1])
for pn in (v_patch_nums or self.v_patch_nums)
] # from small to large
# assert patch_hws[-1][0] == H and patch_hws[-1][1] == W, f'{patch_hws[-1]=} != ({H=}, {W=})'
SN = len(patch_hws)
for si, (ph, pw) in enumerate(patch_hws): # from small to large
codebook_value = (
self.scaler[si].to(device=f_BChw.device, dtype=torch.float).detach()
)
if 0 <= self.prog_si < si:
break # progressive training: not supported yet, prog_si always -1
# find the nearest embedding
z_NC = (
F.interpolate(f_rest, size=(ph, pw), mode="area")
.permute(0, 2, 3, 1)
.reshape(-1, C)
if (si != SN - 1) or ph != 16
else f_rest.permute(0, 2, 3, 1).reshape(-1, C)
)
d_no_grad = torch.where(z_NC > 0, codebook_value, -codebook_value)
idx_N = self.bits_to_indices((d_no_grad > 0))
idx_Bhw = idx_N.view(B, ph, pw)
h_BChw = (
F.interpolate(
self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2),
size=(H, W),
mode="bicubic",
).contiguous()
if (si != SN - 1)
else self.indices_to_bits(idx_Bhw, si).permute(0, 3, 1, 2).contiguous()
)
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw)
f_hat.add_(h_BChw)
f_rest.sub_(h_BChw)
f_hat_or_idx_Bl.append(
f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw)
)
return f_hat_or_idx_Bl
# ===================== idxBl_to_var_input: only used in VAR training, for getting teacher-forcing input =====================
def idxBl_to_var_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor:
next_scales = []
B = gt_ms_idx_Bl[0].shape[0]
C = self.Cvae
H = W = self.v_patch_nums[-1]
SN = len(self.v_patch_nums)
f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32)
pn_next: int = self.v_patch_nums[0]
for si in range(SN - 1):
if self.prog_si == 0 or (0 <= self.prog_si - 1 < si):
break # progressive training: not supported yet, prog_si always -1
h_BChw = F.interpolate(
self.embedding(gt_ms_idx_Bl[si])
.transpose_(1, 2)
.view(B, C, pn_next, pn_next),
size=(H, W),
mode="bicubic",
)
f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw))
pn_next = self.v_patch_nums[si + 1]
next_scales.append(
F.interpolate(f_hat, size=(pn_next, pn_next), mode="area")
.view(B, C, -1)
.transpose(1, 2)
)
return (
torch.cat(next_scales, dim=1) if len(next_scales) else None
) # cat BlCs to BLC, this should be float32
# ===================== get_next_autoregressive_input: only used in VAR inference, for getting next step's input =====================
def get_next_autoregressive_input(
self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor
) -> Tuple[Optional[torch.Tensor], torch.Tensor]: # only used in VAR inference
HW = self.v_patch_nums[-1]
if si != SN - 1:
h = self.quant_resi[si / (SN - 1)](
F.interpolate(h_BChw, size=(HW, HW), mode="bicubic")
) # conv after upsample
f_hat.add_(h)
return f_hat, F.interpolate(
f_hat,
size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]),
mode="area",
)
else:
h = self.quant_resi[si / (SN - 1)](h_BChw)
f_hat.add_(h)
return f_hat, f_hat
class Phi(nn.Conv2d):
def __init__(self, embed_dim, quant_resi):
ks = 3
super().__init__(
in_channels=embed_dim,
out_channels=embed_dim,
kernel_size=ks,
stride=1,
padding=ks // 2,
)
self.resi_ratio = abs(quant_resi)
def forward(self, h_BChw):
return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(
self.resi_ratio
)
class PhiShared(nn.Module):
def __init__(self, qresi: Phi):
super().__init__()
self.qresi: Phi = qresi
def __getitem__(self, _) -> Phi:
return self.qresi
class PhiPartiallyShared(nn.Module):
def __init__(self, qresi_ls: nn.ModuleList):
super().__init__()
self.qresi_ls = qresi_ls
K = len(qresi_ls)
self.ticks = (
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K)
if K == 4
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K)
)
def __getitem__(self, at_from_0_to_1: float) -> Phi:
return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()]
def extra_repr(self) -> str:
return f"ticks={self.ticks}"
class PhiNonShared(nn.ModuleList):
def __init__(self, qresi: List):
super().__init__(qresi)
# self.qresi = qresi
K = len(qresi)
self.ticks = (
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K)
if K == 4
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K)
)
def __getitem__(self, at_from_0_to_1: float) -> Phi:
return super().__getitem__(
np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()
)
def extra_repr(self) -> str:
return f"ticks={self.ticks}"
def schedule(ratio, total_unknown, method="cosine"):
"""Generates a mask rate by scheduling mask functions R.
Given a ratio in [0, 1), we generate a masking ratio from (0, 1]. During
training, the input ratio is uniformly sampled; during inference, the input
ratio is based on the step number divided by the total iteration number: t/T.
Based on experiements, we find that masking more in training helps.
Args:
ratio: The uniformly sampled ratio [0, 1) as input.
total_unknown: The total number of tokens that can be masked out. For
example, in MaskGIT, total_unknown = 256 for 256x256 images and 1024 for
512x512 images.
method: implemented functions are ["uniform", "cosine", "pow", "log", "exp"]
"pow2.5" represents x^2.5
Returns:
The mask rate (float).
"""
if method == "uniform":
mask_ratio = 1.0 - ratio
elif "pow" in method:
exponent = float(method.replace("pow", ""))
mask_ratio = 1.0 - ratio**exponent
elif method == "cosine":
mask_ratio = np.cos(math.pi / 2.0 * ratio)
elif method == "log":
mask_ratio = -np.log2(ratio) / np.log2(total_unknown)
elif method == "exp":
mask_ratio = 1 - np.exp2(-np.log2(total_unknown) * (1 - ratio))
# Clamps mask into [epsilon, 1)
mask_ratio = np.clip(mask_ratio, 0, 1.0)
return mask_ratio
if __name__ == "__main__":
batch_size = 4
seq_len = 16
num_classes = 4096
# # Generate random logits and integer mask
# logits = torch.randn(batch_size, seq_len,seq_len, num_classes)
mask = torch.ones(batch_size, dtype=torch.int)
# # Calculate entropy loss
# sample_entropy, avg_entropy, loss = entropy_loss(
# logits,
# mask=mask,
# sample_minimization_weight=1.0,
# batch_maximization_weight=1.0,
# )
# # Output results
# print("Sample Entropy for mask:", sample_entropy)
# print("Average Entropy for mask:", avg_entropy)
# print("Entropy Loss for mask:", loss)
# # Calculate entropy loss
# sample_entropy, avg_entropy, loss = entropy_loss(
# logits,
# sample_minimization_weight=1.0,
# batch_maximization_weight=1.0,
# )
# # Output results
# print("Sample Entropy:", sample_entropy)
# print("Average Entropy:", avg_entropy)
# print("Entropy Loss:", loss)
quantizer = LFQ(
4096,
12,
using_znorm=False,
v_patch_nums=[1, 2, 3, 4, 5, 6, 8, 10, 12, 16],
)
z = torch.randn(batch_size, seq_len * seq_len, 1, 12)
for i in range(10):
codebook = quantizer.codebook * quantizer.scaler[i]
logits = 2 * torch.einsum("... i d, j d -> ... i j", z, codebook)
per_sample_entropy, codebook_entropy, avg_prob = quantizer.soft_entropy_loss(
z, i, codebook, mask
)
print("Soft Sample Entropy :", per_sample_entropy)
print("Soft codebook Entropy:", codebook_entropy)
print("Soft Entropy Loss", per_sample_entropy - codebook_entropy)
sample_entropy, avg_entropy, loss = entropy_loss(
logits,
mask=mask,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
)
print("Sample Entropy :", sample_entropy)
print("codebook Entropy:", avg_entropy)
print("Entropy Loss", loss)
image_feats = torch.randn(
2, 12, 16, 16
) # 16 is dim, must be power of 2 of codebook_size
dropout_rand = torch.randint(3, len([1, 2, 3, 4, 5, 6, 8, 10, 12, 16]) + 1, (2,))
quantized, usgae, loss = quantizer(
image_feats, ret_usages=True, dropout=dropout_rand
) # you may want to experiment with temperature
assert image_feats.shape == quantized.shape
|