import modal app = modal.App("whisper-agentic") # Define the Modal image environment image = ( modal.Image.debian_slim().apt_install("ffmpeg").pip_install("transformers", "torch", "gradio", "torchaudio", "accelerate", "optimum[diffusers]", "gradio_client") ) @app.function(image=image, gpu="A10G", timeout=7200) def run_gradio(): from transformers import pipeline import gradio as gr # Load Whisper pipeline transcriber = pipeline(model="openai/whisper-large-v2", return_timestamps=True) # Agentic function def transcribe_and_analyze(audio): result = transcriber(audio) transcript = result["text"] word_count = len(transcript.split()) char_count = len(transcript.replace(" ", "")) return transcript, word_count, char_count # Gradio UI with gr.Blocks(title="Whisper Agentic Transcriber") as demo: gr.Markdown("## 🤖 Whisper + Agentic Analysis") audio = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record Audio") btn = gr.Button("Transcribe and Analyze") transcript = gr.Textbox(label="📝 Transcript", lines=4) word_count = gr.Number(label="📏 Word Count") char_count = gr.Number(label="🔡 Character Count") btn.click(fn=transcribe_and_analyze, inputs=audio, outputs=[transcript, word_count, char_count]) demo.launch(server_name="0.0.0.0", server_port=7860, share=True, mcp_server=True)