Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
import requests
|
|
|
2 |
|
3 |
from PIL import Image
|
4 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
5 |
|
6 |
|
7 |
-
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
|
8 |
-
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
|
9 |
|
10 |
# The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs.
|
11 |
|
12 |
#prompt = "{question}"
|
13 |
|
14 |
-
def describe_image(image_path, question : str):
|
15 |
-
inputs = processor(text=question, images=image_path, return_tensors="pt")
|
16 |
|
17 |
-
generated_ids = model.generate(
|
18 |
pixel_values=inputs["pixel_values"],
|
19 |
input_ids=inputs["input_ids"],
|
20 |
attention_mask=inputs["attention_mask"],
|
@@ -23,12 +24,12 @@ def describe_image(image_path, question : str):
|
|
23 |
use_cache=True,
|
24 |
max_new_tokens=128,
|
25 |
)
|
26 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
27 |
|
28 |
# Specify `cleanup_and_extract=False` in order to see the raw model generation.
|
29 |
-
processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
|
30 |
|
31 |
-
processed_text, entities = processor.post_process_generation(generated_text)
|
32 |
|
33 |
return processed_text
|
34 |
|
|
|
1 |
import requests
|
2 |
+
import asyncio
|
3 |
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
6 |
|
7 |
|
8 |
+
model = await AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
|
9 |
+
processor = await AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
|
10 |
|
11 |
# The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs.
|
12 |
|
13 |
#prompt = "{question}"
|
14 |
|
15 |
+
async def describe_image(image_path, question : str):
|
16 |
+
inputs = await processor(text=question, images=image_path, return_tensors="pt")
|
17 |
|
18 |
+
await generated_ids = model.generate(
|
19 |
pixel_values=inputs["pixel_values"],
|
20 |
input_ids=inputs["input_ids"],
|
21 |
attention_mask=inputs["attention_mask"],
|
|
|
24 |
use_cache=True,
|
25 |
max_new_tokens=128,
|
26 |
)
|
27 |
+
generated_text = await processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
28 |
|
29 |
# Specify `cleanup_and_extract=False` in order to see the raw model generation.
|
30 |
+
processed_text = await processor.post_process_generation(generated_text, cleanup_and_extract=False)
|
31 |
|
32 |
+
processed_text, entities = await processor.post_process_generation(generated_text)
|
33 |
|
34 |
return processed_text
|
35 |
|