Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import gradio as gr | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-small.en" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def audio2text(audio_file): | |
output=pipe(audio_file) | |
return output['text'] | |
gr.Interface(fn=audio2text, inputs=[gr.Audio, label='upload your audio file', source='upload', type='filepath'], outputs=[gr.Textbox, label="transcription"]).launch() | |