medimage / app.py
hubsnippetai's picture
Create app.py
a93e5a6 verified
raw
history blame
952 Bytes
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import gradio as gr
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-small.en"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
def audio2text(audio_file):
output=pipe(audio_file)
return output['text']
gr.Interface(fn=audio2text, inputs=[gr.Audio, label='upload your audio file', source='upload', type='filepath'], outputs=[gr.Textbox, label="transcription"]).launch()