hubsnippetai commited on
Commit
1435f74
1 Parent(s): c331011

Update app.py

Browse files

updated transcription model for timestamp feature

Files changed (1) hide show
  1. app.py +34 -5
app.py CHANGED
@@ -1,7 +1,10 @@
1
  import torch
2
- from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
 
3
  import gradio as gr
 
4
 
 
5
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
6
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
7
 
@@ -23,9 +26,35 @@ pipe = pipeline(
23
  torch_dtype=torch_dtype,
24
  device=device,
25
  )
 
 
26
 
27
- def audio2text(audio_file):
28
- output=pipe(audio_file)
29
- return output['text']
30
 
31
- gr.Interface(fn=audio2text, inputs=[gr.Audio(label='upload your audio file', sources='upload', type='filepath')], outputs=[gr.Textbox(label="transcription")]).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ # from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
3
+ from transformers import pipeline
4
  import gradio as gr
5
+ import datetime
6
 
7
+ """
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
10
 
 
26
  torch_dtype=torch_dtype,
27
  device=device,
28
  )
29
+ """
30
+ # call a text generation model to display the audio content after identifying the word(s) in the text output
31
 
32
+ #import torch
33
+ #from transformers import pipeline
34
+ #from datasets import load_dataset
35
 
36
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
37
+
38
+ pipe = pipeline(
39
+ "automatic-speech-recognition",
40
+ # model="openai/whisper-base",
41
+ model = "microsoft/whisper-base-webnn",
42
+ chunk_length_s=30,
43
+ device=device,
44
+ )
45
+
46
+ # ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
47
+ # sample = ds[0]["audio"]
48
+
49
+ # prediction = pipe(sample.copy(), batch_size=8)["text"]
50
+
51
+ # we can also return timestamps for the predictions
52
+ prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
53
+
54
+
55
+ def audio2text(audio_file, prompt : str | list):
56
+ prediction = pipe(audio_file, batch_size=8, return_timestamps=True)["chunks"]
57
+ #prediction=pipe(audio_file)
58
+ return prediction['text']
59
+
60
+ gr.Interface(fn=audio2text, inputs=[gr.Audio(label='upload your audio file', sources='upload', type='filepath'), gr.Textbox(label="provide word(s) to search for")], outputs=[gr.Textbox(label="transcription")]).launch()