Spaces:
Sleeping
Sleeping
hubsnippetai
commited on
Commit
•
1435f74
1
Parent(s):
c331011
Update app.py
Browse filesupdated transcription model for timestamp feature
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
|
3 |
import gradio as gr
|
|
|
4 |
|
|
|
5 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
6 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
|
@@ -23,9 +26,35 @@ pipe = pipeline(
|
|
23 |
torch_dtype=torch_dtype,
|
24 |
device=device,
|
25 |
)
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
+
from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
+
import datetime
|
6 |
|
7 |
+
"""
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
|
|
|
26 |
torch_dtype=torch_dtype,
|
27 |
device=device,
|
28 |
)
|
29 |
+
"""
|
30 |
+
# call a text generation model to display the audio content after identifying the word(s) in the text output
|
31 |
|
32 |
+
#import torch
|
33 |
+
#from transformers import pipeline
|
34 |
+
#from datasets import load_dataset
|
35 |
|
36 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
37 |
+
|
38 |
+
pipe = pipeline(
|
39 |
+
"automatic-speech-recognition",
|
40 |
+
# model="openai/whisper-base",
|
41 |
+
model = "microsoft/whisper-base-webnn",
|
42 |
+
chunk_length_s=30,
|
43 |
+
device=device,
|
44 |
+
)
|
45 |
+
|
46 |
+
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
47 |
+
# sample = ds[0]["audio"]
|
48 |
+
|
49 |
+
# prediction = pipe(sample.copy(), batch_size=8)["text"]
|
50 |
+
|
51 |
+
# we can also return timestamps for the predictions
|
52 |
+
prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|
53 |
+
|
54 |
+
|
55 |
+
def audio2text(audio_file, prompt : str | list):
|
56 |
+
prediction = pipe(audio_file, batch_size=8, return_timestamps=True)["chunks"]
|
57 |
+
#prediction=pipe(audio_file)
|
58 |
+
return prediction['text']
|
59 |
+
|
60 |
+
gr.Interface(fn=audio2text, inputs=[gr.Audio(label='upload your audio file', sources='upload', type='filepath'), gr.Textbox(label="provide word(s) to search for")], outputs=[gr.Textbox(label="transcription")]).launch()
|