import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import gradio as gr device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-small.en" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) def audio2text(audio_file): output=pipe(audio_file) return output['text'] gr.Interface(fn=audio2text, inputs=[gr.Audio, label='upload your audio file', source='upload', type='filepath'], outputs=[gr.Textbox, label="transcription"]).launch()