#/export from fastai.vision.all import * import gradio as gr learn = load_learner('export.pkl') categories = ('primary', 'clear', 'agriculture', 'road', 'water', 'partly_cloudly', 'cultivation', 'habitation', 'haze', 'cloudy', 'bare_ground', 'selective_logging', 'artisinal_mine', 'blooming', 'slash_burn', 'blow_down', 'conventional_mine') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) intf.launch(inline=False)