import gradio as gr from fastai.vision.all import * import skimage as sk #testing learn = load_learner('export.pkl') labels = learn.dls.vocab EXAMPLES_PATH = Path('./') examples = [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()] def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface( fn=predict, examples=['train_0.jpg','train_147.jpg','train_251.jpg','train_255.jpg','train_256.jpg','train_258.jpg','train_272.jpg'], inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)