Spaces:
Sleeping
Sleeping
Commit
·
0b0bcd2
0
Parent(s):
Duplicate from karthikeyan-adople/Multi-URL-Doc-Chatbot
Browse files- .gitattributes +36 -0
- README.md +13 -0
- app.py +202 -0
- bg.png +3 -0
- logo.png +0 -0
- requirements.txt +16 -0
- style.css +41 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
bg.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Multi URL Doc Chatbot
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.38.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: karthikeyan-adople/Multi-URL-Doc-Chatbot
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import NoneStr
|
2 |
+
import os
|
3 |
+
from langchain.chains.question_answering import load_qa_chain
|
4 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain.llms import OpenAI
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
import gradio as gr
|
12 |
+
import openai
|
13 |
+
from langchain import PromptTemplate, OpenAI, LLMChain
|
14 |
+
import validators
|
15 |
+
import requests
|
16 |
+
import mimetypes
|
17 |
+
import tempfile
|
18 |
+
|
19 |
+
class Chatbot:
|
20 |
+
def __init__(self):
|
21 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
def get_empty_state(self):
|
23 |
+
|
24 |
+
""" Create empty Knowledge base"""
|
25 |
+
|
26 |
+
return {"knowledge_base": None}
|
27 |
+
|
28 |
+
def create_knowledge_base(self,docs):
|
29 |
+
|
30 |
+
"""Create a knowledge base from the given documents.
|
31 |
+
Args:
|
32 |
+
docs (List[str]): List of documents.
|
33 |
+
Returns:
|
34 |
+
FAISS: Knowledge base built from the documents.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Initialize a CharacterTextSplitter to split the documents into chunks
|
38 |
+
# Each chunk has a maximum length of 500 characters
|
39 |
+
# There is no overlap between the chunks
|
40 |
+
text_splitter = CharacterTextSplitter(
|
41 |
+
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
42 |
+
)
|
43 |
+
|
44 |
+
# Split the documents into chunks using the text_splitter
|
45 |
+
chunks = text_splitter.split_documents(docs)
|
46 |
+
|
47 |
+
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
|
48 |
+
embeddings = OpenAIEmbeddings()
|
49 |
+
|
50 |
+
# Build a knowledge base using Chroma from the chunks and their embeddings
|
51 |
+
knowledge_base = Chroma.from_documents(chunks, embeddings)
|
52 |
+
|
53 |
+
# Return the resulting knowledge base
|
54 |
+
return knowledge_base
|
55 |
+
|
56 |
+
|
57 |
+
def upload_file(self,file_paths):
|
58 |
+
"""Upload a file and create a knowledge base from its contents.
|
59 |
+
Args:
|
60 |
+
file_paths : The files to uploaded.
|
61 |
+
Returns:
|
62 |
+
tuple: A tuple containing the file name and the knowledge base.
|
63 |
+
"""
|
64 |
+
|
65 |
+
file_paths = [i.name for i in file_paths]
|
66 |
+
print(file_paths)
|
67 |
+
|
68 |
+
|
69 |
+
loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
|
70 |
+
|
71 |
+
# Load the contents of the file using the loader
|
72 |
+
docs = []
|
73 |
+
for loader in loaders:
|
74 |
+
docs.extend(loader.load())
|
75 |
+
|
76 |
+
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
|
77 |
+
knowledge_base = self.create_knowledge_base(docs)
|
78 |
+
|
79 |
+
|
80 |
+
# Return a tuple containing the file name and the knowledge base
|
81 |
+
return file_paths, {"knowledge_base": knowledge_base}
|
82 |
+
|
83 |
+
def add_text(self,history, text):
|
84 |
+
history = history + [(text, None)]
|
85 |
+
print("History for Add text : ",history)
|
86 |
+
return history, gr.update(value="", interactive=False)
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def upload_multiple_urls(self,urls):
|
91 |
+
urlss = [url.strip() for url in urls.split(',')]
|
92 |
+
all_docs = []
|
93 |
+
file_paths = []
|
94 |
+
for url in urlss:
|
95 |
+
if validators.url(url):
|
96 |
+
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
97 |
+
r = requests.get(url,headers=headers)
|
98 |
+
if r.status_code != 200:
|
99 |
+
raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
|
100 |
+
content_type = r.headers.get("content-type")
|
101 |
+
file_extension = mimetypes.guess_extension(content_type)
|
102 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
|
103 |
+
temp_file.write(r.content)
|
104 |
+
file_path = temp_file.name
|
105 |
+
file_paths.append(file_path)
|
106 |
+
|
107 |
+
loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
|
108 |
+
|
109 |
+
# Load the contents of the file using the loader
|
110 |
+
docs = []
|
111 |
+
for loader in loaders:
|
112 |
+
docs.extend(loader.load())
|
113 |
+
|
114 |
+
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
|
115 |
+
knowledge_base = self.create_knowledge_base(docs)
|
116 |
+
|
117 |
+
return file_paths,{"knowledge_base":knowledge_base}
|
118 |
+
|
119 |
+
def answer_question(self, question,history,state):
|
120 |
+
"""Answer a question based on the current knowledge base.
|
121 |
+
Args:
|
122 |
+
state (dict): The current state containing the knowledge base.
|
123 |
+
Returns:
|
124 |
+
str: The answer to the question.
|
125 |
+
"""
|
126 |
+
|
127 |
+
# Retrieve the knowledge base from the state dictionary
|
128 |
+
knowledge_base = state["knowledge_base"]
|
129 |
+
retriever = knowledge_base.as_retriever()
|
130 |
+
qa = ConversationalRetrievalChain.from_llm(
|
131 |
+
llm=OpenAI(temperature=0.1),
|
132 |
+
retriever=retriever,
|
133 |
+
return_source_documents=False)
|
134 |
+
# Set the question for which we want to find the answer
|
135 |
+
res = []
|
136 |
+
question = history[-1][0]
|
137 |
+
for human, ai in history[:-1]:
|
138 |
+
pair = (human, ai)
|
139 |
+
res.append(pair)
|
140 |
+
|
141 |
+
chat_history = []
|
142 |
+
|
143 |
+
query = question
|
144 |
+
result = qa({"question": query, "chat_history": chat_history})
|
145 |
+
# Perform a similarity search on the knowledge base to retrieve relevant documents
|
146 |
+
response = result["answer"]
|
147 |
+
# Return the response as the answer to the question
|
148 |
+
history[-1][1] = response
|
149 |
+
print("History for QA : ",history)
|
150 |
+
return history
|
151 |
+
|
152 |
+
|
153 |
+
def clear_function(self,state):
|
154 |
+
state.clear()
|
155 |
+
# state = gr.State(self.get_empty_state())
|
156 |
+
|
157 |
+
def gradio_interface(self):
|
158 |
+
|
159 |
+
"""Create the Gradio interface for the Chemical Identifier."""
|
160 |
+
|
161 |
+
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as demo:
|
162 |
+
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'>
|
163 |
+
<center>
|
164 |
+
<h1 class ="center">
|
165 |
+
<img src="file=logo.png" height="110px" width="280px">
|
166 |
+
</h1>
|
167 |
+
</center>
|
168 |
+
<be>
|
169 |
+
<h1 style="color:#fff">
|
170 |
+
Virtual Assistant Chatbot
|
171 |
+
</h1>
|
172 |
+
</center>""")
|
173 |
+
state = gr.State(self.get_empty_state())
|
174 |
+
with gr.Column(elem_id="col-container"):
|
175 |
+
with gr.Accordion("Upload Files", open = False):
|
176 |
+
with gr.Row(elem_id="row-flex"):
|
177 |
+
with gr.Row(elem_id="row-flex"):
|
178 |
+
with gr.Column(scale=1,):
|
179 |
+
file_url = gr.Textbox(label='file url :',show_label=True, placeholder="")
|
180 |
+
with gr.Row(elem_id="row-flex"):
|
181 |
+
with gr.Column(scale=1):
|
182 |
+
file_output = gr.File()
|
183 |
+
with gr.Column(scale=1):
|
184 |
+
upload_button = gr.UploadButton("Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],file_count = "multiple")
|
185 |
+
with gr.Row():
|
186 |
+
chatbot = gr.Chatbot([], elem_id="chatbot")
|
187 |
+
with gr.Row():
|
188 |
+
txt = gr.Textbox(label = "Question",show_label=True,placeholder="Enter text and press Enter")
|
189 |
+
with gr.Row():
|
190 |
+
clear_btn = gr.Button(value="Clear")
|
191 |
+
|
192 |
+
txt_msg = txt.submit(self.add_text, [chatbot, txt], [chatbot, txt], queue=False).then(self.answer_question, [txt, chatbot, state], chatbot)
|
193 |
+
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
194 |
+
file_url.submit(self.upload_multiple_urls, file_url, [file_output, state])
|
195 |
+
clear_btn.click(self.clear_function,[state],[])
|
196 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
197 |
+
upload_button.upload(self.upload_file, upload_button, [file_output,state])
|
198 |
+
demo.queue().launch(debug=True)
|
199 |
+
|
200 |
+
if __name__=="__main__":
|
201 |
+
chatbot = Chatbot()
|
202 |
+
chatbot.gradio_interface()
|
bg.png
ADDED
![]() |
Git LFS Details
|
logo.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
gradio
|
6 |
+
pypdf
|
7 |
+
requests
|
8 |
+
unstructured
|
9 |
+
validators
|
10 |
+
pytesseract
|
11 |
+
pdf2image
|
12 |
+
tabulate
|
13 |
+
nltk
|
14 |
+
python-dotenv
|
15 |
+
faiss-cpu
|
16 |
+
requests
|
style.css
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#col-container {
|
2 |
+
max-width: 1000px;
|
3 |
+
margin-left: auto;
|
4 |
+
margin-right: auto;
|
5 |
+
}
|
6 |
+
.heightfit{
|
7 |
+
height:120px;
|
8 |
+
}
|
9 |
+
gradio-app{
|
10 |
+
background:url("file=bg.png") !important;
|
11 |
+
}
|
12 |
+
|
13 |
+
#row-flex {
|
14 |
+
display: flex;
|
15 |
+
align-items: center;
|
16 |
+
justify-content: center;
|
17 |
+
}
|
18 |
+
.leftimage .rightimage{
|
19 |
+
float:left;
|
20 |
+
}
|
21 |
+
.leftimage{
|
22 |
+
padding-top:27px;
|
23 |
+
margin-left:210px;
|
24 |
+
}
|
25 |
+
.rightimage{
|
26 |
+
margin-right:210px;
|
27 |
+
margin-top:15px;
|
28 |
+
}
|
29 |
+
a,
|
30 |
+
a:hover,
|
31 |
+
a:visited {
|
32 |
+
text-decoration-line: underline;
|
33 |
+
font-weight: 600;
|
34 |
+
color: #1f2937 !important;
|
35 |
+
}
|
36 |
+
|
37 |
+
.dark a,
|
38 |
+
.dark a:hover,
|
39 |
+
.dark a:visited {
|
40 |
+
color: #f3f4f6 !important;
|
41 |
+
}
|