File size: 25,865 Bytes
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e5a6c
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5839265
e8e5a6c
eca6fb0
 
5839265
 
83c124a
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5839265
eca6fb0
83c124a
12f3dcc
 
 
eca6fb0
 
 
5839265
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e5a6c
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca6fb0
 
3414968
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5839265
eca6fb0
 
 
 
 
5839265
ea4220d
4c7da61
 
 
11018e3
 
eca6fb0
5839265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca6fb0
 
 
 
4c7da61
eca6fb0
 
5839265
eca6fb0
 
 
 
 
 
 
5839265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca6fb0
 
5839265
 
 
 
f334ecc
 
 
 
5839265
f334ecc
 
 
 
 
 
 
 
 
 
 
 
5839265
f334ecc
5839265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca6fb0
 
5839265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca6fb0
 
 
 
 
 
e8e5a6c
 
 
 
eca6fb0
 
 
3414968
eca6fb0
 
 
 
 
 
 
 
 
ea4220d
4c7da61
 
 
 
 
 
 
11018e3
 
 
4c7da61
 
 
 
 
 
 
 
 
11018e3
 
 
 
ea4220d
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5839265
e8e5a6c
eca6fb0
5839265
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# import gradio as gr
import gradio
# import lmdb
# import base64
# import io
# import random
# import time
import json
import copy
# import sqlite3
from urllib.parse import urljoin
import openai


DEFAULT_PROMPT = [
    ["system", "You(assistant) are a helpful AI assistant."],
]


# def get_settings(old_state):
#     db_path = './my_app_state'
#     env = lmdb.open(db_path, max_dbs=2*1024*1024)
#     # print(env.stat())
#     txn = env.begin()
#     saved_api_key = txn.get(key=b'api_key').decode('utf-8') or ''
#     txn.commit()
#     env.close()

#     new_state = copy.deepcopy(old_state) or {}
#     new_state['api_key'] = saved_api_key

#     return new_state, saved_api_key


# def save_settings(old_state, api_key_text):
#     db_path = './my_app_state'
#     env = lmdb.open(db_path, max_dbs=2*1024*1024)
#     # print(env.stat())
#     txn = env.begin(write=True)
#     txn.put(key=b'api_key', value=api_key_text.encode('utf-8'))
#     # ζδΊ€δΊ‹εŠ‘
#     txn.commit()
#     return get_settings(old_state)


def on_click_send_btn(
        global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
        chat_model, temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias,
    ):

    old_state = json.loads(global_state_json or "{}")

    print('\n\n\n\n\n')
    print(prompt_table)
    prompt_table = prompt_table or []

    chat_log = chat_log or []

    chat_log_md = ''
    if chat_use_prompt:
        chat_log_md += '<center>(prompt)</center>\n\n'
        chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
        chat_log_md += '\n---\n'
    if True:
        chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
        chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
        chat_log_md += '\n---\n'

    # if chat_input=='':
    #     return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input

    print('\n')
    print(chat_input)
    print('')

    try:
        logit_bias_json = json.dumps(logit_bias) if logit_bias else None
    except:
        return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input

    new_state = copy.deepcopy(old_state) or {}



    req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else []

    if chat_use_history:
        for hh in (chat_log or []):
            req_hist.append(hh)

    if chat_input and chat_input!="":
        req_hist.append([(chat_input_role or 'user'), chat_input])

    openai.api_key = api_key_text

    props = {
        'model': chat_model,
        'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)],
        'temperature': temperature,
        'top_p': top_p,
        'n': choices_num,
        'stream': stream,
        'presence_penalty': presence_penalty,
        'frequency_penalty': frequency_penalty,
    }
    if max_tokens>0:
        props['max_tokens'] = max_tokens
    if logit_bias_json is not None:
        props['logit_bias'] = logit_bias_json

    props_json = json.dumps(props)

    try:
        completion = openai.ChatCompletion.create(**props)
        print('')

        chat_log_md = ''
        if chat_use_prompt:
            chat_log_md += '<center>(prompt)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
            chat_log_md += '\n---\n'
        if True:
            chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
            chat_log_md += '\n---\n'

        if chat_input and chat_input!="":
            chat_log.append([(chat_input_role or 'user'), chat_input])
            chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n"
        
        partial_words = ""
        counter=0
        
        if stream:
            the_response = ''
            the_response_role = ''
            for chunk in completion:
                #Skipping first chunk
                if counter == 0:
                    the_response_role = chunk.choices[0].delta.role
                    chat_log_md += f"##### `{the_response_role}`\n\n"
                    counter += 1
                    continue
                # print(('chunk', chunk))
                if chunk.choices[0].finish_reason is None:
                    the_response_chunk = chunk.choices[0].delta.content
                    the_response += the_response_chunk
                    chat_log_md += f"{the_response_chunk}"
                    yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, "{}", props_json, ''
                else:
                    chat_log.append([the_response_role, the_response])
                    chat_log_md += f"\n\n"
                    yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, '{"msg": "streamζ¨‘εΌδΈζ”―ζŒζ˜Ύη€Ί"}', props_json, ''
                # chat_last_resp = json.dumps(completion.__dict__)
                # chat_last_resp_dict = json.loads(chat_last_resp)
                # chat_last_resp_dict['api_key'] = "hidden by UI"
                # chat_last_resp_dict['organization'] = "hidden by UI"
                # chat_last_resp = json.dumps(chat_last_resp_dict)
        else:
            the_response_role = completion.choices[0].message.role
            the_response = completion.choices[0].message.content
            print(the_response)
            print('')

            chat_log.append([the_response_role, the_response])
            chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n"

            chat_last_resp = json.dumps(completion.__dict__)
            chat_last_resp_dict = json.loads(chat_last_resp)
            chat_last_resp_dict['api_key'] = "hidden by UI"
            chat_last_resp_dict['organization'] = "hidden by UI"
            chat_last_resp = json.dumps(chat_last_resp_dict)
    
            return json.dumps(new_state), chat_log, chat_log_md, chat_log_md, chat_last_resp, props_json, ''
    except Exception as error:
        print(error)
        print('error!!!!!!')

        chat_log_md = ''
        if chat_use_prompt:
            chat_log_md += '<center>(prompt)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
            chat_log_md += '\n---\n'
        if True:
            chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
            chat_log_md += '\n---\n'

        # chat_log_md = ''
        # chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else ''
        # chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)])

        chat_log_md += "\n"
        chat_log_md += str(error)
        return json.dumps(new_state), chat_log, chat_log_md, chat_log_md, None, props_json, chat_input


def clear_history():
    return [], ""


def copy_history(txt):
    # print('\n\n copying')
    # print(txt)
    # print('\n\n')
    pass


def update_saved_prompt_titles(global_state_json, selected_saved_prompt_title):
    print('')
    global_state = json.loads(global_state_json or "{}")
    print(global_state)
    print(selected_saved_prompt_title)
    saved_prompts = global_state.get('saved_prompts') or []
    print(saved_prompts)
    the_choices = [(it.get('title') or '[untitled]') for it in saved_prompts]
    print(the_choices)
    print('')
    return gradio.Dropdown.update(choices=the_choices)


def save_prompt(global_state_json, saved_prompts, prompt_title, prompt_table):
    the_choices = []
    global_state = json.loads(global_state_json or "{}")
    saved_prompts = global_state.get('saved_prompts') or []
    if len(saved_prompts):
        the_choices = [it.get('title') or '[untitled]' for it in saved_prompts]
        pass
    return global_state_json, gradio.Dropdown.update(choices=the_choices, value=prompt_title), prompt_title, prompt_table


def load_saved_prompt(title):
    pass


css = """
.table-wrap .cell-wrap input {min-width:80%}
#api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s}
#api-key-textbox textarea:focus {filter:none}
#chat-log-md hr {margin-top: 1rem; margin-bottom: 1rem;}
"""
with gradio.Blocks(title="ChatGPT", css=css) as demo:
    global_state_json = gradio.Textbox(visible=False)

    # https://gradio.app/docs
    # https://platform.openai.com/docs/api-reference/chat/create

    with gradio.Tab("ChatGPT"):

        with gradio.Row():
            with gradio.Box():
                with gradio.Column(scale=12):
                    with gradio.Row():
                        api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox")
                    with gradio.Row():
                        with gradio.Column(scale=2):
                            api_key_refresh_btn = gradio.Button("πŸ”„ Load from browser storage")
                            api_key_refresh_btn.click(
                                # get_settings,
                                None,
                                inputs=[],
                                outputs=[api_key_text],
                                api_name="load-settings",
                                _js="""()=>{
                                    const the_api_key = localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]') ?? '';
                                    return the_api_key;
                                }""",
                            )
                        with gradio.Column(scale=2):
                            api_key_save_btn = gradio.Button("πŸ’Ύ Save to browser storage")
                            api_key_save_btn.click(
                                # save_settings,
                                None,
                                inputs=[api_key_text],
                                outputs=[api_key_text],
                                api_name="save-settings",
                                _js="""(api_key_text)=>{
                                    localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text);
                                    return api_key_text;
                                }""",
                            )
                    with gradio.Row():
                        gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.")

        with gradio.Row():
            with gradio.Box():
                gradio.Markdown("**Prompt**")
                with gradio.Column(scale=12):
                    with gradio.Row():
                        with gradio.Column(scale=6):
                            prompt_title = gradio.Textbox(label='Prompt title (only for saving)')
                        with gradio.Column(scale=6):
                            selected_saved_prompt_title = gradio.Dropdown(label='Select prompt from saved list (click ♻️ then πŸ”„)')
                    with gradio.Row():
                        with gradio.Column(scale=1, min_width=100):
                            saved_prompts_refresh_btn = gradio.Button("♻️")
                        with gradio.Column(scale=1, min_width=100):
                            saved_prompts_save_btn = gradio.Button("πŸ’Ύ")
                        with gradio.Column(scale=1, min_width=100):
                            saved_prompts_delete_btn = gradio.Button("πŸ—‘")
                        with gradio.Column(scale=1, min_width=100):
                            saved_prompts_list_refresh_btn = gradio.Button("πŸ”„")
                        with gradio.Column(scale=1, min_width=100):
                            copy_prompt = gradio.Button("πŸ“‘")
                        with gradio.Column(scale=1, min_width=100):
                            paste_prompt = gradio.Button("πŸ“‹")
                    with gradio.Row():
                        gradio.Markdown("""Buttons above:  ♻️ then πŸ”„: Load prompts from browser storage.  πŸ’Ύ then πŸ”„: Save current prompt to browser storage, overwrite the prompt with the same title.  πŸ—‘ then πŸ”„: Delete prompt with the same title from browser storage.  πŸ”„ : Update the selector list.  πŸ“‘ : Copy current prompt to clipboard.  πŸ“‹ : Paste prompt from clipboard (need [permission](https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/readText#browser_compatibility)).""")
                    with gradio.Row():
                        prompt_table = gradio.Dataframe(
                            type='array',
                            label='Prompt content', col_count=(2, 'fixed'), max_cols=2,
                            value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True,
                        )
                    with gradio.Row():
                        gradio.Markdown("The Table above is editable. The content will be added to the beginning of the conversation (if you check 'send with prompt' as `√`). See https://platform.openai.com/docs/guides/chat/introduction .")

                copy_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""(prompt_title, prompt_table)=>{
                    try {
                        const txt = JSON.stringify({
                            title: prompt_title,
                            content: prompt_table,
                        }, null, 2);
                        console.log(txt);
                        const promise = navigator?.clipboard?.writeText?.(txt);
                    } catch(error) {console?.log?.(error);};
                    return [prompt_title, prompt_table];
                }""")
                paste_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""async (prompt_title, prompt_table)=>{
                    console.log("flag1");
                    try {
                        const promise = navigator?.clipboard?.readText?.();
                        console.log(promise);
                        console.log("flag1 p");
                        const result = await promise?.then?.((txt)=>{
                            console.log("flag1 t");
                            const json = JSON.parse(txt);
                            const title = json?.title ?? "";
                            console.log("flag1 0");
                            console.log(title);
                            const content = json?.content ?? {data: [], headers: ['role', 'content']};
                            console.log(content);
                            const result = [title, content];
                            console.log("flag1 1");
                            console.log(result);
                            console.log("flag1 2");
                            return result;
                        });
                        console.log("flag1 3");
                        if (result!=null) {
                            return result;
                        };
                    } catch(error) {console?.log?.(error);};
                    console.log("flag2");
                    try {
                        const promise = navigator?.clipboard?.read?.();
                        console.log(promise);
                        promise?.then?.((data)=>{
                            console.log(data);
                        });
                    } catch(error) {console?.log?.(error);};
                    console.log("flag3");
                    return [prompt_title, prompt_table];
                }""")
                saved_prompts_refresh_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, selected_saved_prompt_title], _js="""(global_state_json, saved_prompts)=>{
                    try {
                        if(global_state_json=="") {global_state_json=null;};
                        console.log('global_state_json:\\n', global_state_json);
                        const global_state = JSON.parse(global_state_json??"{ }")??{ };

                        const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
                        console.log('saved:\\n', saved);
                        global_state['saved_prompts'] = saved;
                        global_state['selected_saved_prompt_title'] = saved.map(it=>it?.title??"[untitled]")[0];

                        const results = [JSON.stringify(global_state), global_state['selected_saved_prompt_title']];
                        console.log(results);
                        return results;
                    } catch(error) {
                        console.log(error);
                        return ["{ }", ""];
                    };
                }""")

                saved_prompts_list_refresh_btn.click(
                    update_saved_prompt_titles, inputs=[global_state_json, selected_saved_prompt_title], outputs=[selected_saved_prompt_title],
                )

                selected_saved_prompt_title.change(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, prompt_title, prompt_table], _js="""(global_state_json, selected_saved_prompt_title)=>{
                    if(global_state_json=="") {global_state_json=null;};
                    const global_state = JSON.parse(global_state_json??"{ }")??{ };
                    const found = (global_state?.['saved_prompts']??[]).find(it=>it?.title==selected_saved_prompt_title);
                    return [JSON.stringify(global_state), found?.title??'', found?.content??{data:[], headers:["role", "content"]}];
                }""")

                saved_prompts_delete_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{
                    if(prompt_title==""||!prompt_title){
                        return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table];
                    };
                    console.log('global_state_json:\\n', global_state_json);

                    if(global_state_json=="") {global_state_json=null;};
                    const global_state = JSON.parse(global_state_json??"{ }")??{ };
                    console.log(global_state);

                    const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
                    console.log('saved:\\n', saved);


                    global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[];

                    global_state['selected_saved_prompt_title'] = "";

                    console.log(global_state);

                    localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts']));

                    return [JSON.stringify(global_state), "", "", {data: [], headers: ['role', 'content']}];
                }""")

                saved_prompts_save_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{
                    if(prompt_title==""||!prompt_title){
                        return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table];
                    };
                    console.log('global_state_json:\\n', global_state_json);

                    if(global_state_json=="") {global_state_json=null;};
                    const global_state = JSON.parse(global_state_json??"{ }")??{ };
                    console.log(global_state);

                    const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
                    console.log('saved:\\n', saved);


                    const new_prompt_obj = {
                        title: prompt_title, content: prompt_table,
                    };

                    global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[];

                    global_state['saved_prompts'].unshift(new_prompt_obj);

                    global_state['selected_saved_prompt_title'] = prompt_title;

                    console.log(global_state);

                    localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts']));

                    return [JSON.stringify(global_state), prompt_title, prompt_title, prompt_table];
                }""")


        with gradio.Row():
            with gradio.Column(scale=4):
                with gradio.Box():
                    gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .")
                    chat_model = gradio.Dropdown(label="model", choices=[
                        "gpt-3.5-turbo", "gpt-3.5-turbo-0301",
                        "gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314",
                    ], value="gpt-3.5-turbo")
                    chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2)
                    chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1)
                    chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20)
                    chat_stream = gradio.Checkbox(label="stream", value=True, visible=True)
                    chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096)
                    chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2)
                    chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2)
                    chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False)
                pass
            with gradio.Column(scale=8):
                with gradio.Row():
                    with gradio.Column(scale=10):
                        chat_log = gradio.State()
                        with gradio.Box():
                            with gradio.Column(scale=10):
                                chat_log_box = gradio.Markdown(label='chat history', value="<center>(empty)</center>", elem_id="chat-log-md")
                                real_md_box = gradio.Textbox(value="", visible=False)
                                with gradio.Row():
                                    chat_copy_history_btn = gradio.Button("Copy all (as HTML)")
                                    chat_copy_history_md_btn = gradio.Button("Copy all (as Markdown)")

                            chat_copy_history_btn.click(
                                copy_history, inputs=[chat_log_box],
                                _js="""(txt)=>{
                                    console.log(txt);
                                    try {let promise = navigator?.clipboard?.writeText?.(txt);}
                                    catch(error) {console?.log?.(error);};
                                }""",
                            )
                            chat_copy_history_md_btn.click(
                                copy_history, inputs=[real_md_box],
                                _js="""(txt)=>{
                                    console.log(txt);
                                    try {let promise = navigator?.clipboard?.writeText?.(txt);}
                                    catch(error) {console?.log?.(error);};
                                }""",
                            )
                        chat_input_role = gradio.Dropdown(label='role', choices=['user', 'system', 'assistant'], value='user')
                        chat_input = gradio.Textbox(lines=4, label='input')
                with gradio.Row():
                    chat_clear_history_btn = gradio.Button("clear history")
                    chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box])
                    chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True)
                    chat_use_history = gradio.Checkbox(label='send with history', value=True)
                    chat_send_btn = gradio.Button("send")
                pass

        with gradio.Row():
            chat_last_req = gradio.JSON(label='last request')
            chat_last_resp = gradio.JSON(label='last response')
            chat_send_btn.click(
                on_click_send_btn,
                inputs=[
                    global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
                    chat_model, chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias,
                ],
                outputs=[global_state_json, chat_log, chat_log_box, real_md_box, chat_last_resp, chat_last_req, chat_input],
                api_name="click-send-btn",
            )

        pass



    with gradio.Tab("Settings"):
        gradio.Markdown('Currently nothing.')
        pass


if __name__ == "__main__":
    demo.queue(concurrency_count=20).launch()