Spaces:
Running
Running
File size: 25,865 Bytes
eca6fb0 e8e5a6c eca6fb0 5839265 e8e5a6c eca6fb0 5839265 83c124a eca6fb0 5839265 eca6fb0 83c124a 12f3dcc eca6fb0 5839265 eca6fb0 e8e5a6c eca6fb0 6817ce7 eca6fb0 6817ce7 eca6fb0 5839265 eca6fb0 5839265 ea4220d 4c7da61 11018e3 eca6fb0 5839265 eca6fb0 4c7da61 eca6fb0 5839265 eca6fb0 5839265 eca6fb0 5839265 f334ecc 5839265 f334ecc 5839265 f334ecc 5839265 eca6fb0 5839265 eca6fb0 e8e5a6c eca6fb0 6817ce7 eca6fb0 ea4220d 4c7da61 11018e3 4c7da61 11018e3 ea4220d eca6fb0 5839265 e8e5a6c eca6fb0 5839265 eca6fb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# import gradio as gr
import gradio
# import lmdb
# import base64
# import io
# import random
# import time
import json
import copy
# import sqlite3
from urllib.parse import urljoin
import openai
DEFAULT_PROMPT = [
["system", "You(assistant) are a helpful AI assistant."],
]
# def get_settings(old_state):
# db_path = './my_app_state'
# env = lmdb.open(db_path, max_dbs=2*1024*1024)
# # print(env.stat())
# txn = env.begin()
# saved_api_key = txn.get(key=b'api_key').decode('utf-8') or ''
# txn.commit()
# env.close()
# new_state = copy.deepcopy(old_state) or {}
# new_state['api_key'] = saved_api_key
# return new_state, saved_api_key
# def save_settings(old_state, api_key_text):
# db_path = './my_app_state'
# env = lmdb.open(db_path, max_dbs=2*1024*1024)
# # print(env.stat())
# txn = env.begin(write=True)
# txn.put(key=b'api_key', value=api_key_text.encode('utf-8'))
# # ζδΊ€δΊε‘
# txn.commit()
# return get_settings(old_state)
def on_click_send_btn(
global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
chat_model, temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias,
):
old_state = json.loads(global_state_json or "{}")
print('\n\n\n\n\n')
print(prompt_table)
prompt_table = prompt_table or []
chat_log = chat_log or []
chat_log_md = ''
if chat_use_prompt:
chat_log_md += '<center>(prompt)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
chat_log_md += '\n---\n'
if True:
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
chat_log_md += '\n---\n'
# if chat_input=='':
# return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input
print('\n')
print(chat_input)
print('')
try:
logit_bias_json = json.dumps(logit_bias) if logit_bias else None
except:
return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input
new_state = copy.deepcopy(old_state) or {}
req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else []
if chat_use_history:
for hh in (chat_log or []):
req_hist.append(hh)
if chat_input and chat_input!="":
req_hist.append([(chat_input_role or 'user'), chat_input])
openai.api_key = api_key_text
props = {
'model': chat_model,
'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)],
'temperature': temperature,
'top_p': top_p,
'n': choices_num,
'stream': stream,
'presence_penalty': presence_penalty,
'frequency_penalty': frequency_penalty,
}
if max_tokens>0:
props['max_tokens'] = max_tokens
if logit_bias_json is not None:
props['logit_bias'] = logit_bias_json
props_json = json.dumps(props)
try:
completion = openai.ChatCompletion.create(**props)
print('')
chat_log_md = ''
if chat_use_prompt:
chat_log_md += '<center>(prompt)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
chat_log_md += '\n---\n'
if True:
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
chat_log_md += '\n---\n'
if chat_input and chat_input!="":
chat_log.append([(chat_input_role or 'user'), chat_input])
chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n"
partial_words = ""
counter=0
if stream:
the_response = ''
the_response_role = ''
for chunk in completion:
#Skipping first chunk
if counter == 0:
the_response_role = chunk.choices[0].delta.role
chat_log_md += f"##### `{the_response_role}`\n\n"
counter += 1
continue
# print(('chunk', chunk))
if chunk.choices[0].finish_reason is None:
the_response_chunk = chunk.choices[0].delta.content
the_response += the_response_chunk
chat_log_md += f"{the_response_chunk}"
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, "{}", props_json, ''
else:
chat_log.append([the_response_role, the_response])
chat_log_md += f"\n\n"
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, '{"msg": "stream樑εΌδΈζ―ζζΎη€Ί"}', props_json, ''
# chat_last_resp = json.dumps(completion.__dict__)
# chat_last_resp_dict = json.loads(chat_last_resp)
# chat_last_resp_dict['api_key'] = "hidden by UI"
# chat_last_resp_dict['organization'] = "hidden by UI"
# chat_last_resp = json.dumps(chat_last_resp_dict)
else:
the_response_role = completion.choices[0].message.role
the_response = completion.choices[0].message.content
print(the_response)
print('')
chat_log.append([the_response_role, the_response])
chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n"
chat_last_resp = json.dumps(completion.__dict__)
chat_last_resp_dict = json.loads(chat_last_resp)
chat_last_resp_dict['api_key'] = "hidden by UI"
chat_last_resp_dict['organization'] = "hidden by UI"
chat_last_resp = json.dumps(chat_last_resp_dict)
return json.dumps(new_state), chat_log, chat_log_md, chat_log_md, chat_last_resp, props_json, ''
except Exception as error:
print(error)
print('error!!!!!!')
chat_log_md = ''
if chat_use_prompt:
chat_log_md += '<center>(prompt)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
chat_log_md += '\n---\n'
if True:
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
chat_log_md += '\n---\n'
# chat_log_md = ''
# chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else ''
# chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)])
chat_log_md += "\n"
chat_log_md += str(error)
return json.dumps(new_state), chat_log, chat_log_md, chat_log_md, None, props_json, chat_input
def clear_history():
return [], ""
def copy_history(txt):
# print('\n\n copying')
# print(txt)
# print('\n\n')
pass
def update_saved_prompt_titles(global_state_json, selected_saved_prompt_title):
print('')
global_state = json.loads(global_state_json or "{}")
print(global_state)
print(selected_saved_prompt_title)
saved_prompts = global_state.get('saved_prompts') or []
print(saved_prompts)
the_choices = [(it.get('title') or '[untitled]') for it in saved_prompts]
print(the_choices)
print('')
return gradio.Dropdown.update(choices=the_choices)
def save_prompt(global_state_json, saved_prompts, prompt_title, prompt_table):
the_choices = []
global_state = json.loads(global_state_json or "{}")
saved_prompts = global_state.get('saved_prompts') or []
if len(saved_prompts):
the_choices = [it.get('title') or '[untitled]' for it in saved_prompts]
pass
return global_state_json, gradio.Dropdown.update(choices=the_choices, value=prompt_title), prompt_title, prompt_table
def load_saved_prompt(title):
pass
css = """
.table-wrap .cell-wrap input {min-width:80%}
#api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s}
#api-key-textbox textarea:focus {filter:none}
#chat-log-md hr {margin-top: 1rem; margin-bottom: 1rem;}
"""
with gradio.Blocks(title="ChatGPT", css=css) as demo:
global_state_json = gradio.Textbox(visible=False)
# https://gradio.app/docs
# https://platform.openai.com/docs/api-reference/chat/create
with gradio.Tab("ChatGPT"):
with gradio.Row():
with gradio.Box():
with gradio.Column(scale=12):
with gradio.Row():
api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox")
with gradio.Row():
with gradio.Column(scale=2):
api_key_refresh_btn = gradio.Button("π Load from browser storage")
api_key_refresh_btn.click(
# get_settings,
None,
inputs=[],
outputs=[api_key_text],
api_name="load-settings",
_js="""()=>{
const the_api_key = localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]') ?? '';
return the_api_key;
}""",
)
with gradio.Column(scale=2):
api_key_save_btn = gradio.Button("πΎ Save to browser storage")
api_key_save_btn.click(
# save_settings,
None,
inputs=[api_key_text],
outputs=[api_key_text],
api_name="save-settings",
_js="""(api_key_text)=>{
localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text);
return api_key_text;
}""",
)
with gradio.Row():
gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.")
with gradio.Row():
with gradio.Box():
gradio.Markdown("**Prompt**")
with gradio.Column(scale=12):
with gradio.Row():
with gradio.Column(scale=6):
prompt_title = gradio.Textbox(label='Prompt title (only for saving)')
with gradio.Column(scale=6):
selected_saved_prompt_title = gradio.Dropdown(label='Select prompt from saved list (click β»οΈ then π)')
with gradio.Row():
with gradio.Column(scale=1, min_width=100):
saved_prompts_refresh_btn = gradio.Button("β»οΈ")
with gradio.Column(scale=1, min_width=100):
saved_prompts_save_btn = gradio.Button("πΎ")
with gradio.Column(scale=1, min_width=100):
saved_prompts_delete_btn = gradio.Button("π")
with gradio.Column(scale=1, min_width=100):
saved_prompts_list_refresh_btn = gradio.Button("π")
with gradio.Column(scale=1, min_width=100):
copy_prompt = gradio.Button("π")
with gradio.Column(scale=1, min_width=100):
paste_prompt = gradio.Button("π")
with gradio.Row():
gradio.Markdown("""Buttons above: β»οΈ then π: Load prompts from browser storage. πΎ then π: Save current prompt to browser storage, overwrite the prompt with the same title. π then π: Delete prompt with the same title from browser storage. π : Update the selector list. π : Copy current prompt to clipboard. π : Paste prompt from clipboard (need [permission](https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/readText#browser_compatibility)).""")
with gradio.Row():
prompt_table = gradio.Dataframe(
type='array',
label='Prompt content', col_count=(2, 'fixed'), max_cols=2,
value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True,
)
with gradio.Row():
gradio.Markdown("The Table above is editable. The content will be added to the beginning of the conversation (if you check 'send with prompt' as `β`). See https://platform.openai.com/docs/guides/chat/introduction .")
copy_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""(prompt_title, prompt_table)=>{
try {
const txt = JSON.stringify({
title: prompt_title,
content: prompt_table,
}, null, 2);
console.log(txt);
const promise = navigator?.clipboard?.writeText?.(txt);
} catch(error) {console?.log?.(error);};
return [prompt_title, prompt_table];
}""")
paste_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""async (prompt_title, prompt_table)=>{
console.log("flag1");
try {
const promise = navigator?.clipboard?.readText?.();
console.log(promise);
console.log("flag1 p");
const result = await promise?.then?.((txt)=>{
console.log("flag1 t");
const json = JSON.parse(txt);
const title = json?.title ?? "";
console.log("flag1 0");
console.log(title);
const content = json?.content ?? {data: [], headers: ['role', 'content']};
console.log(content);
const result = [title, content];
console.log("flag1 1");
console.log(result);
console.log("flag1 2");
return result;
});
console.log("flag1 3");
if (result!=null) {
return result;
};
} catch(error) {console?.log?.(error);};
console.log("flag2");
try {
const promise = navigator?.clipboard?.read?.();
console.log(promise);
promise?.then?.((data)=>{
console.log(data);
});
} catch(error) {console?.log?.(error);};
console.log("flag3");
return [prompt_title, prompt_table];
}""")
saved_prompts_refresh_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, selected_saved_prompt_title], _js="""(global_state_json, saved_prompts)=>{
try {
if(global_state_json=="") {global_state_json=null;};
console.log('global_state_json:\\n', global_state_json);
const global_state = JSON.parse(global_state_json??"{ }")??{ };
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
console.log('saved:\\n', saved);
global_state['saved_prompts'] = saved;
global_state['selected_saved_prompt_title'] = saved.map(it=>it?.title??"[untitled]")[0];
const results = [JSON.stringify(global_state), global_state['selected_saved_prompt_title']];
console.log(results);
return results;
} catch(error) {
console.log(error);
return ["{ }", ""];
};
}""")
saved_prompts_list_refresh_btn.click(
update_saved_prompt_titles, inputs=[global_state_json, selected_saved_prompt_title], outputs=[selected_saved_prompt_title],
)
selected_saved_prompt_title.change(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, prompt_title, prompt_table], _js="""(global_state_json, selected_saved_prompt_title)=>{
if(global_state_json=="") {global_state_json=null;};
const global_state = JSON.parse(global_state_json??"{ }")??{ };
const found = (global_state?.['saved_prompts']??[]).find(it=>it?.title==selected_saved_prompt_title);
return [JSON.stringify(global_state), found?.title??'', found?.content??{data:[], headers:["role", "content"]}];
}""")
saved_prompts_delete_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{
if(prompt_title==""||!prompt_title){
return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table];
};
console.log('global_state_json:\\n', global_state_json);
if(global_state_json=="") {global_state_json=null;};
const global_state = JSON.parse(global_state_json??"{ }")??{ };
console.log(global_state);
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
console.log('saved:\\n', saved);
global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[];
global_state['selected_saved_prompt_title'] = "";
console.log(global_state);
localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts']));
return [JSON.stringify(global_state), "", "", {data: [], headers: ['role', 'content']}];
}""")
saved_prompts_save_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{
if(prompt_title==""||!prompt_title){
return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table];
};
console.log('global_state_json:\\n', global_state_json);
if(global_state_json=="") {global_state_json=null;};
const global_state = JSON.parse(global_state_json??"{ }")??{ };
console.log(global_state);
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]'));
console.log('saved:\\n', saved);
const new_prompt_obj = {
title: prompt_title, content: prompt_table,
};
global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[];
global_state['saved_prompts'].unshift(new_prompt_obj);
global_state['selected_saved_prompt_title'] = prompt_title;
console.log(global_state);
localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts']));
return [JSON.stringify(global_state), prompt_title, prompt_title, prompt_table];
}""")
with gradio.Row():
with gradio.Column(scale=4):
with gradio.Box():
gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .")
chat_model = gradio.Dropdown(label="model", choices=[
"gpt-3.5-turbo", "gpt-3.5-turbo-0301",
"gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314",
], value="gpt-3.5-turbo")
chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2)
chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1)
chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20)
chat_stream = gradio.Checkbox(label="stream", value=True, visible=True)
chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096)
chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2)
chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2)
chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False)
pass
with gradio.Column(scale=8):
with gradio.Row():
with gradio.Column(scale=10):
chat_log = gradio.State()
with gradio.Box():
with gradio.Column(scale=10):
chat_log_box = gradio.Markdown(label='chat history', value="<center>(empty)</center>", elem_id="chat-log-md")
real_md_box = gradio.Textbox(value="", visible=False)
with gradio.Row():
chat_copy_history_btn = gradio.Button("Copy all (as HTML)")
chat_copy_history_md_btn = gradio.Button("Copy all (as Markdown)")
chat_copy_history_btn.click(
copy_history, inputs=[chat_log_box],
_js="""(txt)=>{
console.log(txt);
try {let promise = navigator?.clipboard?.writeText?.(txt);}
catch(error) {console?.log?.(error);};
}""",
)
chat_copy_history_md_btn.click(
copy_history, inputs=[real_md_box],
_js="""(txt)=>{
console.log(txt);
try {let promise = navigator?.clipboard?.writeText?.(txt);}
catch(error) {console?.log?.(error);};
}""",
)
chat_input_role = gradio.Dropdown(label='role', choices=['user', 'system', 'assistant'], value='user')
chat_input = gradio.Textbox(lines=4, label='input')
with gradio.Row():
chat_clear_history_btn = gradio.Button("clear history")
chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box])
chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True)
chat_use_history = gradio.Checkbox(label='send with history', value=True)
chat_send_btn = gradio.Button("send")
pass
with gradio.Row():
chat_last_req = gradio.JSON(label='last request')
chat_last_resp = gradio.JSON(label='last response')
chat_send_btn.click(
on_click_send_btn,
inputs=[
global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
chat_model, chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias,
],
outputs=[global_state_json, chat_log, chat_log_box, real_md_box, chat_last_resp, chat_last_req, chat_input],
api_name="click-send-btn",
)
pass
with gradio.Tab("Settings"):
gradio.Markdown('Currently nothing.')
pass
if __name__ == "__main__":
demo.queue(concurrency_count=20).launch()
|