geninhu commited on
Commit
5e78353
·
1 Parent(s): c3b9254

Upload StyleMix.py

Browse files
Files changed (1) hide show
  1. StyleMix.py +70 -0
StyleMix.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.optim as optim
4
+ import torch.nn.functional as F
5
+ from torch.utils.data.dataloader import DataLoader
6
+ from torchvision import transforms
7
+ from torchvision import utils as vutils
8
+
9
+ from models import Generator
10
+ from utils import copy_G_params, load_params
11
+
12
+
13
+
14
+ def get_early_features(net, noise):
15
+ with torch.no_grad():
16
+ feat_4 = net._init(noise)
17
+ feat_8 = net._upsample_8(feat_4)
18
+ feat_16 = net._upsample_16(feat_8)
19
+ feat_32 = net._upsample_32(feat_16)
20
+ feat_64 = net._upsample_64(feat_32)
21
+ return feat_8, feat_16, feat_32, feat_64
22
+
23
+ def get_late_features(net, feat_64, feat_8, feat_16, feat_32):
24
+ with torch.no_grad():
25
+ feat_128 = net._upsample_128(feat_64)
26
+ feat_128 = net._sle_128(feat_8, feat_128)
27
+
28
+ feat_256 = net._upsample_256(feat_128)
29
+ feat_256 = net._sle_256(feat_16, feat_256)
30
+
31
+ feat_512 = net._upsample_512(feat_256)
32
+ feat_512 = net._sle_512(feat_32, feat_512)
33
+
34
+ feat_1024 = net._upsample_1024(feat_512)
35
+
36
+ return net._out_1024(feat_1024)
37
+
38
+ def style_mix(model_name_or_path, bs, device):
39
+ _in_channels = 256
40
+ im_size = 1024
41
+
42
+ netG = Generator(in_channels=_in_channels, out_channels=3)
43
+ netG = netG.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
44
+ _ = netG.to(device)
45
+ _ = netG.eval()
46
+
47
+ avg_param_G = copy_G_params(netG)
48
+ load_params(netG, avg_param_G)
49
+
50
+ noise_a = torch.randn(bs, 256, 1, 1, device=device).to(device)
51
+ noise_b = torch.randn(bs, 256, 1, 1, device=device).to(device)
52
+
53
+ feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a)
54
+ feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b)
55
+
56
+ images_b = get_late_features(netG, feat_64_b, feat_8_b, feat_16_b, feat_32_b)
57
+ images_a = get_late_features(netG, feat_64_a, feat_8_a, feat_16_a, feat_32_a)
58
+
59
+ imgs = [ torch.ones(1, 3, im_size, im_size) ]
60
+
61
+ imgs.append(images_b.cpu())
62
+ for i in range(bs):
63
+ imgs.append(images_a[i].unsqueeze(0).cpu())
64
+ gimgs = get_late_features(netG, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b)
65
+ imgs.append(gimgs.cpu())
66
+
67
+ imgs = torch.cat(imgs)
68
+ # vutils.save_image(imgs.add(1).mul(0.5), 'style_mix/style_mix_2.jpg', nrow=bs+1)
69
+
70
+ return imgs