Spaces:
Runtime error
Runtime error
Upload StyleMix.py
Browse files- StyleMix.py +70 -0
StyleMix.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.utils.data.dataloader import DataLoader
|
6 |
+
from torchvision import transforms
|
7 |
+
from torchvision import utils as vutils
|
8 |
+
|
9 |
+
from models import Generator
|
10 |
+
from utils import copy_G_params, load_params
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def get_early_features(net, noise):
|
15 |
+
with torch.no_grad():
|
16 |
+
feat_4 = net._init(noise)
|
17 |
+
feat_8 = net._upsample_8(feat_4)
|
18 |
+
feat_16 = net._upsample_16(feat_8)
|
19 |
+
feat_32 = net._upsample_32(feat_16)
|
20 |
+
feat_64 = net._upsample_64(feat_32)
|
21 |
+
return feat_8, feat_16, feat_32, feat_64
|
22 |
+
|
23 |
+
def get_late_features(net, feat_64, feat_8, feat_16, feat_32):
|
24 |
+
with torch.no_grad():
|
25 |
+
feat_128 = net._upsample_128(feat_64)
|
26 |
+
feat_128 = net._sle_128(feat_8, feat_128)
|
27 |
+
|
28 |
+
feat_256 = net._upsample_256(feat_128)
|
29 |
+
feat_256 = net._sle_256(feat_16, feat_256)
|
30 |
+
|
31 |
+
feat_512 = net._upsample_512(feat_256)
|
32 |
+
feat_512 = net._sle_512(feat_32, feat_512)
|
33 |
+
|
34 |
+
feat_1024 = net._upsample_1024(feat_512)
|
35 |
+
|
36 |
+
return net._out_1024(feat_1024)
|
37 |
+
|
38 |
+
def style_mix(model_name_or_path, bs, device):
|
39 |
+
_in_channels = 256
|
40 |
+
im_size = 1024
|
41 |
+
|
42 |
+
netG = Generator(in_channels=_in_channels, out_channels=3)
|
43 |
+
netG = netG.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
|
44 |
+
_ = netG.to(device)
|
45 |
+
_ = netG.eval()
|
46 |
+
|
47 |
+
avg_param_G = copy_G_params(netG)
|
48 |
+
load_params(netG, avg_param_G)
|
49 |
+
|
50 |
+
noise_a = torch.randn(bs, 256, 1, 1, device=device).to(device)
|
51 |
+
noise_b = torch.randn(bs, 256, 1, 1, device=device).to(device)
|
52 |
+
|
53 |
+
feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a)
|
54 |
+
feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b)
|
55 |
+
|
56 |
+
images_b = get_late_features(netG, feat_64_b, feat_8_b, feat_16_b, feat_32_b)
|
57 |
+
images_a = get_late_features(netG, feat_64_a, feat_8_a, feat_16_a, feat_32_a)
|
58 |
+
|
59 |
+
imgs = [ torch.ones(1, 3, im_size, im_size) ]
|
60 |
+
|
61 |
+
imgs.append(images_b.cpu())
|
62 |
+
for i in range(bs):
|
63 |
+
imgs.append(images_a[i].unsqueeze(0).cpu())
|
64 |
+
gimgs = get_late_features(netG, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b)
|
65 |
+
imgs.append(gimgs.cpu())
|
66 |
+
|
67 |
+
imgs = torch.cat(imgs)
|
68 |
+
# vutils.save_image(imgs.add(1).mul(0.5), 'style_mix/style_mix_2.jpg', nrow=bs+1)
|
69 |
+
|
70 |
+
return imgs
|