Spaces:
Runtime error
Runtime error
Ceyda Cinarel
commited on
Commit
·
21feb87
1
Parent(s):
47cfe13
almost final
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +65 -22
- assets/code_snippets/latent_walk.py +15 -0
- assets/code_snippets/latent_walk_music.py +55 -0
- assets/gen_mosaic_lowres.jpg +0 -0
- assets/outputs/0_fake.jpg +0 -0
- assets/outputs/100_fake.jpg +0 -0
- assets/outputs/101_fake.jpg +0 -0
- assets/outputs/102_fake.jpg +0 -0
- assets/outputs/103_fake.jpg +0 -0
- assets/outputs/104_fake.jpg +0 -0
- assets/outputs/105_fake.jpg +0 -0
- assets/outputs/106_fake.jpg +0 -0
- assets/outputs/107_fake.jpg +0 -0
- assets/outputs/108_fake.jpg +0 -0
- assets/outputs/109_fake.jpg +0 -0
- assets/outputs/10_fake.jpg +0 -0
- assets/outputs/110_fake.jpg +0 -0
- assets/outputs/111_fake.jpg +0 -0
- assets/outputs/112_fake.jpg +0 -0
- assets/outputs/113_fake.jpg +0 -0
- assets/outputs/114_fake.jpg +0 -0
- assets/outputs/115_fake.jpg +0 -0
- assets/outputs/116_fake.jpg +0 -0
- assets/outputs/117_fake.jpg +0 -0
- assets/outputs/118_fake.jpg +0 -0
- assets/outputs/119_fake.jpg +0 -0
- assets/outputs/11_fake.jpg +0 -0
- assets/outputs/120_fake.jpg +0 -0
- assets/outputs/121_fake.jpg +0 -0
- assets/outputs/122_fake.jpg +0 -0
- assets/outputs/123_fake.jpg +0 -0
- assets/outputs/124_fake.jpg +0 -0
- assets/outputs/125_fake.jpg +0 -0
- assets/outputs/126_fake.jpg +0 -0
- assets/outputs/127_fake.jpg +0 -0
- assets/outputs/128_fake.jpg +0 -0
- assets/outputs/129_fake.jpg +0 -0
- assets/outputs/12_fake.jpg +0 -0
- assets/outputs/130_fake.jpg +0 -0
- assets/outputs/131_fake.jpg +0 -0
- assets/outputs/132_fake.jpg +0 -0
- assets/outputs/133_fake.jpg +0 -0
- assets/outputs/134_fake.jpg +0 -0
- assets/outputs/135_fake.jpg +0 -0
- assets/outputs/136_fake.jpg +0 -0
- assets/outputs/137_fake.jpg +0 -0
- assets/outputs/138_fake.jpg +0 -0
- assets/outputs/139_fake.jpg +0 -0
- assets/outputs/13_fake.jpg +0 -0
- assets/outputs/140_fake.jpg +0 -0
app.py
CHANGED
@@ -1,20 +1,17 @@
|
|
1 |
-
from pydoc import ModuleScanner
|
2 |
-
import re
|
3 |
import streamlit as st # HF spaces at v1.2.0
|
4 |
from demo import load_model,generate,get_dataset,embed,make_meme
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
|
|
7 |
# TODOs
|
8 |
# Add markdown short readme project intro
|
|
|
9 |
|
10 |
|
11 |
st.sidebar.subheader("This butterfly does not exist! ")
|
12 |
st.sidebar.image("assets/logo.png", width=200)
|
13 |
|
14 |
-
st.
|
15 |
-
|
16 |
-
st.write("Demo prep still in progress!! Come back later")
|
17 |
-
|
18 |
|
19 |
@st.experimental_singleton
|
20 |
def load_model_intocache(model_name,model_version):
|
@@ -27,16 +24,29 @@ def load_dataset():
|
|
27 |
dataset=get_dataset()
|
28 |
return dataset
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
model_name='ceyda/butterfly_cropped_uniq1K_512'
|
31 |
# model_version='0edac54b81958b82ce9fd5c1f688c33ac8e4f223'
|
32 |
model_version=None ##TBD
|
33 |
model=load_model_intocache(model_name,model_version)
|
34 |
dataset=load_dataset()
|
|
|
35 |
|
36 |
generate_menu="🦋 Make butterflies"
|
37 |
latent_walk_menu="🎧 Take a latent walk"
|
38 |
make_meme_menu="🐦 Make a meme"
|
39 |
mosaic_menu="👀 See the mosaic"
|
|
|
40 |
|
41 |
screen = st.sidebar.radio("Pick a destination",[generate_menu,latent_walk_menu,make_meme_menu,mosaic_menu])
|
42 |
|
@@ -52,8 +62,10 @@ if screen == generate_menu:
|
|
52 |
st.session_state['ims'] = None
|
53 |
run()
|
54 |
ims=st.session_state["ims"]
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
if ims is not None:
|
58 |
cols=st.columns(col_num)
|
59 |
picks=[False]*batch_size
|
@@ -79,34 +91,65 @@ if screen == generate_menu:
|
|
79 |
scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(ims[i]), k=5)
|
80 |
for r in retrieved_examples["image"]:
|
81 |
cols[i].image(r)
|
82 |
-
|
83 |
-
st.write(f"Latent dimension: {model.latent_dim},
|
84 |
|
85 |
elif screen == latent_walk_menu:
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
cols=st.columns(3)
|
89 |
|
|
|
90 |
cols[0].video("assets/latent_walks/regular_walk.mp4")
|
91 |
-
|
|
|
92 |
cols[1].video("assets/latent_walks/walk_happyrock.mp4")
|
93 |
-
cols[
|
94 |
cols[2].video("assets/latent_walks/walk_cute.mp4")
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
elif screen == make_meme_menu:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
st.image(meme)
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
elif screen == mosaic_menu:
|
108 |
-
st.
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
# footer stuff
|
@@ -116,6 +159,6 @@ st.sidebar.caption(f"[Model](https://huggingface.co/ceyda/butterfly_cropped_uniq
|
|
116 |
# Credits
|
117 |
st.sidebar.caption(f"Made during the [huggan](https://github.com/huggingface/community-events) hackathon")
|
118 |
st.sidebar.caption(f"Contributors:")
|
119 |
-
st.sidebar.caption(f"[Ceyda Cinarel](https://
|
120 |
|
121 |
## Feel free to add more & change stuff ^
|
|
|
|
|
|
|
1 |
import streamlit as st # HF spaces at v1.2.0
|
2 |
from demo import load_model,generate,get_dataset,embed,make_meme
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
import io
|
6 |
# TODOs
|
7 |
# Add markdown short readme project intro
|
8 |
+
# Add link to wandb logs
|
9 |
|
10 |
|
11 |
st.sidebar.subheader("This butterfly does not exist! ")
|
12 |
st.sidebar.image("assets/logo.png", width=200)
|
13 |
|
14 |
+
st.title("ButterflyGAN")
|
|
|
|
|
|
|
15 |
|
16 |
@st.experimental_singleton
|
17 |
def load_model_intocache(model_name,model_version):
|
|
|
24 |
dataset=get_dataset()
|
25 |
return dataset
|
26 |
|
27 |
+
@st.experimental_singleton
|
28 |
+
def load_variables():# Don't want to open read files over and over. not sure if it makes a diff
|
29 |
+
st.session_state['latent_walk_code']=open("assets/code_snippets/latent_walk.py").read()
|
30 |
+
st.session_state['latent_walk_code_music']=open("assets/code_snippets/latent_walk_music.py").read()
|
31 |
+
|
32 |
+
def img2download(image):
|
33 |
+
imgByteArr = io.BytesIO()
|
34 |
+
image.save(imgByteArr, format="JPEG")
|
35 |
+
imgByteArr = imgByteArr.getvalue()
|
36 |
+
return imgByteArr
|
37 |
+
|
38 |
model_name='ceyda/butterfly_cropped_uniq1K_512'
|
39 |
# model_version='0edac54b81958b82ce9fd5c1f688c33ac8e4f223'
|
40 |
model_version=None ##TBD
|
41 |
model=load_model_intocache(model_name,model_version)
|
42 |
dataset=load_dataset()
|
43 |
+
load_variables()
|
44 |
|
45 |
generate_menu="🦋 Make butterflies"
|
46 |
latent_walk_menu="🎧 Take a latent walk"
|
47 |
make_meme_menu="🐦 Make a meme"
|
48 |
mosaic_menu="👀 See the mosaic"
|
49 |
+
fun_menu="Release the butterflies"
|
50 |
|
51 |
screen = st.sidebar.radio("Pick a destination",[generate_menu,latent_walk_menu,make_meme_menu,mosaic_menu])
|
52 |
|
|
|
62 |
st.session_state['ims'] = None
|
63 |
run()
|
64 |
ims=st.session_state["ims"]
|
65 |
+
st.write("Light-GAN model trained on 1000 butterfly images taken from the Smithsonian Museum collection. \n \
|
66 |
+
Based on [paper:](https://openreview.net/forum?id=1Fqg133qRaI) *Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis*")
|
67 |
+
|
68 |
+
runb=st.button("Generate", on_click=run ,help="generated on the fly maybe slow")
|
69 |
if ims is not None:
|
70 |
cols=st.columns(col_num)
|
71 |
picks=[False]*batch_size
|
|
|
91 |
scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(ims[i]), k=5)
|
92 |
for r in retrieved_examples["image"]:
|
93 |
cols[i].image(r)
|
94 |
+
st.write("Nearest neighbors found in the training set according to L2 distance on 'microsoft/beit-base-patch16-224' embeddings")
|
95 |
+
st.write(f"Latent dimension: {model.latent_dim}, image size:{model.image_size}")
|
96 |
|
97 |
elif screen == latent_walk_menu:
|
98 |
+
|
99 |
+
latent_walk_code=open("assets/code_snippets/latent_walk.py").read()
|
100 |
+
latent_walk_music_code=open("assets/code_snippets/latent_walk_music.py").read()
|
101 |
+
st.write("Take a latent walk :musical_note: with cute butterflies")
|
102 |
|
103 |
cols=st.columns(3)
|
104 |
|
105 |
+
cols[0].caption("A regular walk (no music)")
|
106 |
cols[0].video("assets/latent_walks/regular_walk.mp4")
|
107 |
+
|
108 |
+
cols[1].caption("Walk with music :butterfly:")
|
109 |
cols[1].video("assets/latent_walks/walk_happyrock.mp4")
|
110 |
+
cols[2].caption("Walk with music :butterfly:")
|
111 |
cols[2].video("assets/latent_walks/walk_cute.mp4")
|
112 |
+
|
113 |
+
st.caption("Royalty Free Music from Bensound")
|
114 |
+
st.write("🎧Did those butterflies seem to be dancing to the music?!Here is the secret:")
|
115 |
+
with st.expander("See the Code Snippets"):
|
116 |
+
st.write("A regular latent walk:")
|
117 |
+
st.code(st.session_state['latent_walk_code'], language='python')
|
118 |
+
st.write(":musical_note: latent walk with music:")
|
119 |
+
st.code(st.session_state['latent_walk_code_music'], language='python')
|
120 |
|
121 |
|
122 |
elif screen == make_meme_menu:
|
123 |
+
if "pigeon" not in st.session_state:
|
124 |
+
st.session_state['pigeon'] = generate(model,1)[0]
|
125 |
+
|
126 |
+
def get_pigeon():
|
127 |
+
st.session_state['pigeon'] = generate(model,1)[0]
|
128 |
+
|
129 |
+
cols= st.columns(2)
|
130 |
+
cols[0].button("change pigeon",on_click=get_pigeon)
|
131 |
+
no_bg=cols[1].checkbox("Remove background?",True,help="Remove the background from pigeon")
|
132 |
+
show_text=cols[1].checkbox("Show text?",True)
|
133 |
+
|
134 |
+
meme_text=st.text_input("Enter text","Is this a pigeon?")
|
135 |
+
|
136 |
+
|
137 |
+
meme=make_meme(st.session_state['pigeon'],text=meme_text,show_text=show_text,remove_background=no_bg)
|
138 |
st.image(meme)
|
139 |
+
coly=st.columns(2)
|
140 |
+
coly[0].download_button("Download", img2download(meme),mime="image/jpeg")
|
141 |
+
coly[1].write("Made a cool one? [Share](https://twitter.com/intent/tweet?text=Check%20out%20the%20demo%20for%20Butterfly%20GAN%20%F0%9F%A6%8Bhttps%3A//huggingface.co/spaces/huggan/butterfly-gan%0Amade%20by%20%40ceyda_cinarel%20%26%20%40johnowhitaker%20) on Twitter")
|
142 |
|
143 |
|
144 |
elif screen == mosaic_menu:
|
145 |
+
cols=st.columns(2)
|
146 |
+
cols[0].markdown("These are all the butterflies in our [training set](https://huggingface.co/huggan/smithsonian_butterflies_subset)")
|
147 |
+
cols[0].image("assets/train_data_mosaic_lowres.jpg")
|
148 |
+
cols[0].write("🔎 view the high-res version [here](https://www.easyzoom.com/imageaccess/0c77e0e716f14ea7bc235447e5a4c397)")
|
149 |
+
|
150 |
+
cols[1].markdown("These are the butterflies our model generated.")
|
151 |
+
cols[1].image("assets/gen_mosaic_lowres.jpg")
|
152 |
+
cols[1].write("🔎 view the high-res version [here](https://www.easyzoom.com/imageaccess/cbb04e81106c4c54a9d9f9dbfb236eab)")
|
153 |
|
154 |
|
155 |
# footer stuff
|
|
|
159 |
# Credits
|
160 |
st.sidebar.caption(f"Made during the [huggan](https://github.com/huggingface/community-events) hackathon")
|
161 |
st.sidebar.caption(f"Contributors:")
|
162 |
+
st.sidebar.caption(f"[Ceyda Cinarel](https://github.com/cceyda) & [Jonathan Whitaker](https://datasciencecastnet.home.blog/)")
|
163 |
|
164 |
## Feel free to add more & change stuff ^
|
assets/code_snippets/latent_walk.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Some parameters
|
2 |
+
n_points = 6 #@param
|
3 |
+
n_steps = 300 #@param
|
4 |
+
latents = torch.randn(n_points, 256)
|
5 |
+
|
6 |
+
# Loop through generating the frames
|
7 |
+
frames = []
|
8 |
+
for i in tqdm(range(n_steps)):
|
9 |
+
p1 = max(0, int(n_points*i/n_steps))
|
10 |
+
p2 = min(n_points, int(n_points*i/n_steps)+1)%n_points # so it wraps back to 0
|
11 |
+
frac = (i-(p1*(n_steps/n_points))) / (n_steps/n_points)
|
12 |
+
l = latents[p1]*(1-frac) + latents[p2]*frac
|
13 |
+
im = model.G(l.unsqueeze(0)).clamp_(0., 1.)
|
14 |
+
frame=(im[0].permute(1, 2, 0).detach().cpu().numpy()*255).astype(np.uint8)
|
15 |
+
frames.append(frame)
|
assets/code_snippets/latent_walk_music.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Code Author: Jonathan Whitaker 😎
|
2 |
+
|
3 |
+
import librosa
|
4 |
+
import soundfile as sf
|
5 |
+
from scipy.signal import savgol_filter
|
6 |
+
|
7 |
+
# The driving audio file
|
8 |
+
audio_file = './sounds/bensound-cute.wav' #@param
|
9 |
+
|
10 |
+
# How many points in the base latent walk loop
|
11 |
+
n_points = 6 #@param
|
12 |
+
|
13 |
+
# Smooths the animation effect, smaller=jerkier, must be odd
|
14 |
+
filter_window_size=301 #@param
|
15 |
+
|
16 |
+
# How much should we scale position based on music vs the base path?
|
17 |
+
chr_scale = 0.5 #@param
|
18 |
+
base_scale = 0.3 #@param
|
19 |
+
|
20 |
+
# Load the file
|
21 |
+
X, sample_rate = sf.read(audio_file, dtype='float32')
|
22 |
+
|
23 |
+
X= X[:int(len(X)*0.5)]
|
24 |
+
|
25 |
+
# Remove percussive elements
|
26 |
+
harmonic = librosa.effects.harmonic(X[:,0])
|
27 |
+
|
28 |
+
# Get chroma_stft (power in different notes)
|
29 |
+
chroma = librosa.feature.chroma_stft(harmonic) # Just one channel
|
30 |
+
|
31 |
+
# Smooth these out
|
32 |
+
chroma = savgol_filter(chroma, filter_window_size, 3)
|
33 |
+
|
34 |
+
# Calculate how many frames we want
|
35 |
+
fps = 25
|
36 |
+
duration = X.shape[0] / sample_rate
|
37 |
+
print('Duration:', duration)
|
38 |
+
n_steps = int(fps * duration)
|
39 |
+
print('N frames:', n_steps, fps * duration)
|
40 |
+
|
41 |
+
latents = torch.randn(n_points, 256)*base_scale
|
42 |
+
chroma_latents = torch.randn(12, 256)*chr_scale
|
43 |
+
|
44 |
+
frames=[]
|
45 |
+
for i in tqdm(range(n_steps)):
|
46 |
+
p1 = max(0, int(n_points*i/n_steps))
|
47 |
+
p2 = min(n_points, int(n_points*i/n_steps)+1)%n_points # so it wraps back to 0
|
48 |
+
frac = (i-(p1*(n_steps/n_points))) / (n_steps/n_points)
|
49 |
+
l = latents[p1]*(1-frac) + latents[p2]*frac
|
50 |
+
for c in range(12): # HERE adding the music influence to the latent
|
51 |
+
scale_factor = chroma[c, int(i*chroma.shape[1]/n_steps)]
|
52 |
+
l += chroma_latents[c]*chr_scale*scale_factor
|
53 |
+
im = model.G(l.unsqueeze(0)).clamp_(0., 1.)
|
54 |
+
frame=(im[0].permute(1, 2, 0).detach().cpu().numpy()*255).astype(np.uint8)
|
55 |
+
frames.append(frame)
|
assets/gen_mosaic_lowres.jpg
ADDED
assets/outputs/0_fake.jpg
ADDED
assets/outputs/100_fake.jpg
ADDED
assets/outputs/101_fake.jpg
ADDED
assets/outputs/102_fake.jpg
ADDED
assets/outputs/103_fake.jpg
ADDED
assets/outputs/104_fake.jpg
ADDED
assets/outputs/105_fake.jpg
ADDED
assets/outputs/106_fake.jpg
ADDED
assets/outputs/107_fake.jpg
ADDED
assets/outputs/108_fake.jpg
ADDED
assets/outputs/109_fake.jpg
ADDED
assets/outputs/10_fake.jpg
ADDED
assets/outputs/110_fake.jpg
ADDED
assets/outputs/111_fake.jpg
ADDED
assets/outputs/112_fake.jpg
ADDED
assets/outputs/113_fake.jpg
ADDED
assets/outputs/114_fake.jpg
ADDED
assets/outputs/115_fake.jpg
ADDED
assets/outputs/116_fake.jpg
ADDED
assets/outputs/117_fake.jpg
ADDED
assets/outputs/118_fake.jpg
ADDED
assets/outputs/119_fake.jpg
ADDED
assets/outputs/11_fake.jpg
ADDED
assets/outputs/120_fake.jpg
ADDED
assets/outputs/121_fake.jpg
ADDED
assets/outputs/122_fake.jpg
ADDED
assets/outputs/123_fake.jpg
ADDED
assets/outputs/124_fake.jpg
ADDED
assets/outputs/125_fake.jpg
ADDED
assets/outputs/126_fake.jpg
ADDED
assets/outputs/127_fake.jpg
ADDED
assets/outputs/128_fake.jpg
ADDED
assets/outputs/129_fake.jpg
ADDED
assets/outputs/12_fake.jpg
ADDED
assets/outputs/130_fake.jpg
ADDED
assets/outputs/131_fake.jpg
ADDED
assets/outputs/132_fake.jpg
ADDED
assets/outputs/133_fake.jpg
ADDED
assets/outputs/134_fake.jpg
ADDED
assets/outputs/135_fake.jpg
ADDED
assets/outputs/136_fake.jpg
ADDED
assets/outputs/137_fake.jpg
ADDED
assets/outputs/138_fake.jpg
ADDED
assets/outputs/139_fake.jpg
ADDED
assets/outputs/13_fake.jpg
ADDED
assets/outputs/140_fake.jpg
ADDED