Spaces:
Running
Running
Commit
·
fd63a18
1
Parent(s):
bdbeae2
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,121 +1,75 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from torch import nn
|
| 9 |
-
from torchvision.utils import save_image
|
| 10 |
from huggingface_hub.hf_api import HfApi
|
| 11 |
import streamlit as st
|
|
|
|
|
|
|
| 12 |
|
| 13 |
hfapi = HfApi()
|
|
|
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
nn.BatchNorm2d(hidden_size * 8),
|
| 23 |
-
nn.ReLU(True),
|
| 24 |
-
# state size. (hidden_size*8) x 4 x 4
|
| 25 |
-
nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False),
|
| 26 |
-
nn.BatchNorm2d(hidden_size * 4),
|
| 27 |
-
nn.ReLU(True),
|
| 28 |
-
# state size. (hidden_size*4) x 8 x 8
|
| 29 |
-
nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False),
|
| 30 |
-
nn.BatchNorm2d(hidden_size * 2),
|
| 31 |
-
nn.ReLU(True),
|
| 32 |
-
# state size. (hidden_size*2) x 16 x 16
|
| 33 |
-
nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False),
|
| 34 |
-
nn.BatchNorm2d(hidden_size),
|
| 35 |
-
nn.ReLU(True),
|
| 36 |
-
# state size. (hidden_size) x 32 x 32
|
| 37 |
-
nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False),
|
| 38 |
-
nn.Tanh()
|
| 39 |
-
# state size. (num_channels) x 64 x 64
|
| 40 |
-
)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
return pixel_values
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
@torch.no_grad()
|
| 49 |
-
def interpolate(model, save_dir='./lerp/', frames=100, rows=8, cols=8):
|
| 50 |
-
save_dir = Path(save_dir)
|
| 51 |
-
save_dir.mkdir(exist_ok=True, parents=True)
|
| 52 |
-
|
| 53 |
-
z1 = torch.randn(rows * cols, 100, 1, 1)
|
| 54 |
-
z2 = torch.randn(rows * cols, 100, 1, 1)
|
| 55 |
-
|
| 56 |
-
zs = []
|
| 57 |
-
for i in range(frames):
|
| 58 |
-
alpha = i / frames
|
| 59 |
-
z = (1 - alpha) * z1 + alpha * z2
|
| 60 |
-
zs.append(z)
|
| 61 |
-
|
| 62 |
-
zs += zs[::-1] # also go in reverse order to complete loop
|
| 63 |
-
|
| 64 |
-
frames = []
|
| 65 |
-
for i, z in enumerate(zs):
|
| 66 |
-
imgs = model(z)
|
| 67 |
-
|
| 68 |
-
save_image(imgs, save_dir / f"{i:03}.png", normalize=True)
|
| 69 |
-
img = Image.open(save_dir / f"{i:03}.png").convert('RGBA')
|
| 70 |
-
img.putalpha(255)
|
| 71 |
-
frames.append(img)
|
| 72 |
-
img.save(save_dir / f"{i:03}.png")
|
| 73 |
-
frames[0].save("out.gif", format="GIF", append_images=frames,
|
| 74 |
-
save_all=True, duration=100, loop=1)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def predict(model_name, choice, seed):
|
| 78 |
-
try:
|
| 79 |
-
model = Generator(3)
|
| 80 |
-
weights_path = hf_hub_download(f'huggingnft/{model_name}', 'pytorch_model.bin')
|
| 81 |
-
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
|
| 82 |
-
except:
|
| 83 |
-
model = Generator(4)
|
| 84 |
-
weights_path = hf_hub_download(f'huggingnft/{model_name}', 'pytorch_model.bin')
|
| 85 |
-
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
|
| 86 |
-
torch.manual_seed(seed)
|
| 87 |
-
|
| 88 |
-
if choice == 'interpolation':
|
| 89 |
-
interpolate(model)
|
| 90 |
-
return 'out.gif'
|
| 91 |
-
else:
|
| 92 |
-
z = torch.randn(64, 100, 1, 1)
|
| 93 |
-
punks = model(z)
|
| 94 |
-
save_image(punks, "image.png", normalize=True)
|
| 95 |
-
img = Image.open(f"image.png").convert('RGBA')
|
| 96 |
-
img.putalpha(255)
|
| 97 |
-
img.save("image.png")
|
| 98 |
-
return 'image.png'
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
|
|
|
| 102 |
|
| 103 |
-
st.set_page_config(page_title="Hugging NFT")
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
st.sidebar.markdown(
|
| 120 |
"""
|
| 121 |
<style>
|
|
@@ -123,11 +77,9 @@ st.sidebar.markdown(
|
|
| 123 |
text-align: center;
|
| 124 |
}
|
| 125 |
</style>
|
| 126 |
-
|
| 127 |
<p style='text-align: center'>
|
| 128 |
-
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
|
| 129 |
</p>
|
| 130 |
-
|
| 131 |
<p class="aligncenter">
|
| 132 |
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
|
| 133 |
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
|
|
@@ -142,73 +94,95 @@ st.sidebar.markdown(
|
|
| 142 |
unsafe_allow_html=True,
|
| 143 |
)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
st.markdown(
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
output_type = st.selectbox(
|
| 165 |
-
'Output type:',
|
| 166 |
-
['image', 'interpolation'])
|
| 167 |
-
|
| 168 |
-
seed_value = st.slider("Seed:",
|
| 169 |
-
min_value=1,
|
| 170 |
-
max_value=1000,
|
| 171 |
-
step=1,
|
| 172 |
-
value=100,
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
model_html = """
|
| 176 |
-
|
| 177 |
-
<div class="inline-flex flex-col" style="line-height: 1.5;">
|
| 178 |
-
<div class="flex">
|
| 179 |
-
<div
|
| 180 |
-
\t\t\tstyle="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('USER_PROFILE')">
|
| 181 |
-
</div>
|
| 182 |
-
</div>
|
| 183 |
-
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
|
| 184 |
-
<div style="text-align: center; font-size: 16px; font-weight: 800">USER_NAME</div>
|
| 185 |
-
<a href="https://genius.com/artists/USER_HANDLE">
|
| 186 |
-
\t<div style="text-align: center; font-size: 14px;">@USER_HANDLE</div>
|
| 187 |
-
</a>
|
| 188 |
-
</div>
|
| 189 |
-
"""
|
| 190 |
-
|
| 191 |
-
if st.button("Run"):
|
| 192 |
-
with st.spinner(text=f"Generating..."):
|
| 193 |
-
st.image(predict(model_name, output_type, seed_value))
|
| 194 |
-
st.subheader("Please star project repository, this space and follow my Twitter:")
|
| 195 |
-
st.markdown(
|
| 196 |
-
"""
|
| 197 |
-
<style>
|
| 198 |
-
.aligncenter {
|
| 199 |
-
text-align: center;
|
| 200 |
-
}
|
| 201 |
-
</style>
|
| 202 |
-
<p class="aligncenter">
|
| 203 |
-
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
|
| 204 |
-
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
|
| 205 |
-
</a>
|
| 206 |
-
</p>
|
| 207 |
-
<p class="aligncenter">
|
| 208 |
-
<a href="https://twitter.com/alekseykorshuk" target="_blank">
|
| 209 |
-
<img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
|
| 210 |
-
</a>
|
| 211 |
-
</p>
|
| 212 |
-
""",
|
| 213 |
-
unsafe_allow_html=True,
|
| 214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from huggingnft.lightweight_gan.train import timestamped_filename
|
| 3 |
+
from streamlit_option_menu import option_menu
|
| 4 |
+
|
| 5 |
+
from huggingface_hub import hf_hub_download, file_download
|
| 6 |
+
|
|
|
|
|
|
|
|
|
|
| 7 |
from huggingface_hub.hf_api import HfApi
|
| 8 |
import streamlit as st
|
| 9 |
+
from huggingnft.lightweight_gan.lightweight_gan import Generator, LightweightGAN, evaluate_in_chunks, Trainer
|
| 10 |
+
from accelerate import Accelerator
|
| 11 |
|
| 12 |
hfapi = HfApi()
|
| 13 |
+
model_names = [model.modelId[model.modelId.index("/") + 1:] for model in hfapi.list_models(author="huggingnft")]
|
| 14 |
|
| 15 |
+
# streamlit-option-menu
|
| 16 |
+
# st.set_page_config(page_title="Sharone's Streamlit App Gallery", page_icon="", layout="wide")
|
| 17 |
|
| 18 |
+
# sysmenu = '''
|
| 19 |
+
# <style>
|
| 20 |
+
# #MainMenu {visibility:hidden;}
|
| 21 |
+
# footer {visibility:hidden;}
|
| 22 |
+
# '''
|
| 23 |
+
# st.markdown(sysmenu,unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# # Add a logo (optional) in the sidebar
|
| 26 |
+
# logo = Image.open(r'C:\Users\13525\Desktop\Insights_Bees_logo.png')
|
| 27 |
+
# profile = Image.open(r'C:\Users\13525\Desktop\medium_profile.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
ABOUT_TEXT = "🤗 Hugging NFT - Generate NFT by OpenSea collection name."
|
| 30 |
+
CONTACT_TEXT = "Here is some contact info"
|
| 31 |
+
GENERATE_IMAGE_TEXT = "Text about generation"
|
| 32 |
+
INTERPOLATION_TEXT = "Text about Interpolation"
|
| 33 |
+
COLLECTION2COLLECTION_TEXT = "Text about Collection2Collection"
|
| 34 |
|
| 35 |
+
STOPWORDS = ["-old"]
|
| 36 |
+
COLLECTION2COLLECTION_KEYS = ["2"]
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
+
def load_lightweight_model(model_name):
|
| 40 |
+
file_path = file_download.hf_hub_download(
|
| 41 |
+
repo_id=model_name,
|
| 42 |
+
filename="config.json"
|
| 43 |
+
)
|
| 44 |
+
config = json.loads(open(file_path).read())
|
| 45 |
+
organization_name, name = model_name.split("/")
|
| 46 |
+
model = Trainer(**config, organization_name=organization_name, name=name)
|
| 47 |
+
model.load(use_cpu=True)
|
| 48 |
+
model.accelerator = Accelerator()
|
| 49 |
+
return model
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def clean_models(model_names, stopwords):
|
| 53 |
+
cleaned_model_names = []
|
| 54 |
+
for model_name in model_names:
|
| 55 |
+
clear = True
|
| 56 |
+
for stopword in stopwords:
|
| 57 |
+
if stopword in model_name:
|
| 58 |
+
clear = False
|
| 59 |
+
break
|
| 60 |
+
if clear:
|
| 61 |
+
cleaned_model_names.append(model_name)
|
| 62 |
+
return cleaned_model_names
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
model_names = clean_models(model_names, STOPWORDS)
|
| 66 |
+
|
| 67 |
+
with st.sidebar:
|
| 68 |
+
choose = option_menu("Hugging NFT",
|
| 69 |
+
["About", "Generate image", "Interpolation", "Collection2Collection", "Contact"],
|
| 70 |
+
icons=['house', 'camera fill', 'bi bi-youtube', 'book', 'person lines fill'],
|
| 71 |
+
menu_icon="app-indicator", default_index=0,
|
| 72 |
+
)
|
| 73 |
st.sidebar.markdown(
|
| 74 |
"""
|
| 75 |
<style>
|
|
|
|
| 77 |
text-align: center;
|
| 78 |
}
|
| 79 |
</style>
|
|
|
|
| 80 |
<p style='text-align: center'>
|
| 81 |
+
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">Project Repository</a>
|
| 82 |
</p>
|
|
|
|
| 83 |
<p class="aligncenter">
|
| 84 |
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
|
| 85 |
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
|
|
|
|
| 94 |
unsafe_allow_html=True,
|
| 95 |
)
|
| 96 |
|
| 97 |
+
if choose == "About":
|
| 98 |
+
st.title(choose)
|
| 99 |
+
st.markdown(ABOUT_TEXT)
|
| 100 |
+
|
| 101 |
+
if choose == "Contact":
|
| 102 |
+
st.title(choose)
|
| 103 |
+
st.markdown(CONTACT_TEXT)
|
| 104 |
+
|
| 105 |
+
if choose == "Generate image":
|
| 106 |
+
st.title(choose)
|
| 107 |
+
st.markdown(GENERATE_IMAGE_TEXT)
|
| 108 |
+
|
| 109 |
+
model_name = st.selectbox(
|
| 110 |
+
'Choose model:',
|
| 111 |
+
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
|
| 112 |
+
)
|
| 113 |
+
generation_type = st.selectbox(
|
| 114 |
+
'Select generation type:',
|
| 115 |
+
["default", "ema"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
)
|
| 117 |
+
|
| 118 |
+
nrows = st.number_input("Number of rows:",
|
| 119 |
+
min_value=1,
|
| 120 |
+
max_value=10,
|
| 121 |
+
step=1,
|
| 122 |
+
value=8,
|
| 123 |
+
)
|
| 124 |
+
generate_image_button = st.button("Generate")
|
| 125 |
+
|
| 126 |
+
if generate_image_button:
|
| 127 |
+
with st.spinner(text=f"Downloading selected model..."):
|
| 128 |
+
model = load_lightweight_model(f"huggingnft/{model_name}")
|
| 129 |
+
with st.spinner(text=f"Generating..."):
|
| 130 |
+
st.image(
|
| 131 |
+
model.generate_app(
|
| 132 |
+
num=timestamped_filename(),
|
| 133 |
+
nrow=nrows,
|
| 134 |
+
checkpoint=-1,
|
| 135 |
+
types=generation_type
|
| 136 |
+
)
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
if choose == "Interpolation":
|
| 140 |
+
st.title(choose)
|
| 141 |
+
st.markdown(INTERPOLATION_TEXT)
|
| 142 |
+
|
| 143 |
+
model_name = st.selectbox(
|
| 144 |
+
'Choose model:',
|
| 145 |
+
clean_models(model_names, COLLECTION2COLLECTION_KEYS)
|
| 146 |
+
)
|
| 147 |
+
nrows = st.number_input("Number of rows:",
|
| 148 |
+
min_value=1,
|
| 149 |
+
max_value=10,
|
| 150 |
+
step=1,
|
| 151 |
+
value=1,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
num_steps = st.number_input("Number of steps:",
|
| 155 |
+
min_value=1,
|
| 156 |
+
max_value=1000,
|
| 157 |
+
step=1,
|
| 158 |
+
value=100,
|
| 159 |
+
)
|
| 160 |
+
generate_image_button = st.button("Generate")
|
| 161 |
+
|
| 162 |
+
if generate_image_button:
|
| 163 |
+
with st.spinner(text=f"Downloading selected model..."):
|
| 164 |
+
model = load_lightweight_model(f"huggingnft/{model_name}")
|
| 165 |
+
my_bar = st.progress(0)
|
| 166 |
+
result = model.generate_interpolation(
|
| 167 |
+
num=timestamped_filename(),
|
| 168 |
+
num_image_tiles=nrows,
|
| 169 |
+
num_steps=num_steps,
|
| 170 |
+
save_frames=False,
|
| 171 |
+
progress_bar=my_bar
|
| 172 |
+
)
|
| 173 |
+
my_bar.empty()
|
| 174 |
+
with st.spinner(text=f"Uploading result..."):
|
| 175 |
+
st.image(result)
|
| 176 |
+
|
| 177 |
+
if choose == "Collection2Collection":
|
| 178 |
+
st.title(choose)
|
| 179 |
+
st.markdown(INTERPOLATION_TEXT)
|
| 180 |
+
|
| 181 |
+
model_name = st.selectbox(
|
| 182 |
+
'Choose model:',
|
| 183 |
+
set(model_names) - set(clean_models(model_names, COLLECTION2COLLECTION_KEYS))
|
| 184 |
+
)
|
| 185 |
+
generate_image_button = st.button("Generate")
|
| 186 |
+
|
| 187 |
+
if generate_image_button:
|
| 188 |
+
st.markdown("generating Collection2Collection")
|