File size: 4,323 Bytes
5eeecb1
86d5bb4
 
 
 
9e71099
7885ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eeecb1
 
9e71099
5eeecb1
 
 
 
86d5bb4
 
5eeecb1
86d5bb4
 
5eeecb1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
from huggingface_hub import PyTorchModelHubMixin
import torch
import matplotlib.pyplot as plt
import torchvision
from networks_fastgan import MyGenerator
import click
import PIL

@click.command()
@click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', default = 10-15, required=True)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--translate', help='Translate XY-coordinate (e.g. \'0.3,1\')', type=parse_vec2, default='0,0', show_default=True, metavar='VEC2')
@click.option('--rotate', help='Rotation angle in degrees', type=float, default=0, show_default=True, metavar='ANGLE')
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
def generate_images(
    seeds: List[int],
    truncation_psi: float,
    noise_mode: str,
    outdir: str,
    translate: Tuple[float,float],
    rotate: float,
    class_idx: Optional[int]
):
    """Generate images using pretrained network pickle.

    Examples:

    \b
    # Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
    python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
        --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl

    \b
    # Generate uncurated images with truncation using the MetFaces-U dataset
    python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
        --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
    """

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    G = MyGenerator.from_pretrained("Cropinky/projected_gan_impressionism")
    print("network loaded")
    # Labels.
    label = torch.zeros([1, G.c_dim], device=device)
    if G.c_dim != 0:
        if class_idx is None:
            raise click.ClickException('Must specify class label with --class when using a conditional network')
        label[:, class_idx] = 1
    else:
        if class_idx is not None:
            print ('warn: --class=lbl ignored when running on an unconditional network')

    # Generate images.
    for seed_idx, seed in enumerate(seeds):
        print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
        z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device).float()

        # Construct an inverse rotation/translation matrix and pass to the generator.  The
        # generator expects this matrix as an inverse to avoid potentially failing numerical
        # operations in the network.
        if hasattr(G.synthesis, 'input'):
            m = make_transform(translate, rotate)
            m = np.linalg.inv(m)
            G.synthesis.input.transform.copy_(torch.from_numpy(m))

        img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
        img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
        PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png')



def image_generation(model, number_of_images=1):
    G = MyGenerator.from_pretrained("Cropinky/projected_gan_impressionism")
    return f"generating {number_of_images} images from {model}"
if __name__ == "__main__":

    inputs = gr.inputs.Radio(["Abstract Expressionism", "Impressionism", "Cubism", "Minimalism", "Pop Art", "Color Field", "Hana Hanak houses"])
    #outputs = gr.outputs.Image(label="Output Image")
    outputs = "text"
    title = "Projected GAN for painting generation"
    description = "Choose your artistic direction "
    article = "<p style='text-align: center'><a href='https://github.com/autonomousvision/projected_gan'>Official projected GAN github repo + paper</a></p>"



    gr.Interface(image_generation, inputs, outputs, title=title, article = article, 
    description=description, analytics_enabled=False).launch(debug=True)

    app, local_url, share_url = iface.launch()