JoPmt commited on
Commit
dda6e69
·
verified ·
1 Parent(s): 81aa707

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +269 -0
app.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline
2
+ import torch
3
+ import cv2
4
+ import numpy as np
5
+ from transformers import pipeline
6
+ import gradio as gr
7
+ from PIL import Image
8
+ from diffusers.utils import load_image
9
+ import os, random, gc, re, json, time, shutil, glob
10
+ import PIL.Image
11
+ import tqdm
12
+ from controlnet_aux import OpenposeDetector
13
+ from accelerate import Accelerator
14
+ from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
15
+ HfApi=HfApi()
16
+ HF_TOKEN=os.getenv("HF_TOKEN")
17
+ HF_HUB_DISABLE_TELEMETRY=1
18
+ DO_NOT_TRACK=1
19
+ HF_HUB_ENABLE_HF_TRANSFER=0
20
+ accelerator = Accelerator(cpu=True)
21
+ InferenceClient=InferenceClient()
22
+
23
+ models =[]
24
+ loris=[]
25
+ apol=[]
26
+
27
+ def hgfdm(models):
28
+ models=models
29
+ poi=InferenceClient.list_deployed_models()
30
+ voi=poi["text-to-image"]
31
+ for met in voi:
32
+ pio=""+met+""
33
+ models.append(pio)
34
+ return models
35
+
36
+ def smdls(models):
37
+ models=models
38
+ mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,)
39
+ if mtlst:
40
+ for nea in mtlst:
41
+ vmh=""+str(nea.id)+""
42
+ models.append(vmh)
43
+ return models
44
+
45
+ def sldls(loris):
46
+ loris=loris
47
+ ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,)
48
+ if ltlst:
49
+ for noa in ltlst:
50
+ lmh=""+str(noa.id)+""
51
+ loris.append(lmh)
52
+ return loris
53
+
54
+ def chdr(apol,prompt,modil,los,stips,fnamo,gaul):
55
+ try:
56
+ type="SD_controlnet"
57
+ tre='./tmpo/'+fnamo+'.json'
58
+ tra='./tmpo/'+fnamo+'_0.png'
59
+ trm='./tmpo/'+fnamo+'_1.png'
60
+ trv='./tmpo/'+fnamo+'_pose.png'
61
+ trh='./tmpo/'+fnamo+'_canny.png'
62
+ trg='./tmpo/'+fnamo+'_cann_im.png'
63
+ trq='./tmpo/'+fnamo+'_tilage.png'
64
+ flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
65
+ flng=[itm[::-1] for itm in flng]
66
+ ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
67
+ if re.search(ptn, prompt, re.IGNORECASE):
68
+ print("onon buddy")
69
+ else:
70
+ dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
71
+ with open(tre, 'w') as f:
72
+ json.dump(dobj, f)
73
+ HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
74
+ dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
75
+ with open(tre, 'w') as f:
76
+ json.dump(dobj, f)
77
+ HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
78
+ try:
79
+ for pgn in glob.glob('./tmpo/*.png'):
80
+ os.remove(pgn)
81
+ for jgn in glob.glob('./tmpo/*.json'):
82
+ os.remove(jgn)
83
+ del tre
84
+ del tra
85
+ del trm
86
+ del trv
87
+ del trh
88
+ del trg
89
+ del trq
90
+ except:
91
+ print("cant")
92
+ except:
93
+ print("failed to umake obj")
94
+
95
+ def crll(dnk):
96
+ lix=""
97
+ lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model")
98
+ for flre in list(lotr):
99
+ fllr=[]
100
+ gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path)
101
+ yir=re.search(r'[^/]+$', flre.path)
102
+ if gar:
103
+ fllr.append(""+str(yir.group(0))+"")
104
+ lix=""+fllr[-1]+""
105
+ else:
106
+ lix=""
107
+ return lix
108
+
109
+ def plax(gaul,req: gr.Request):
110
+ gaul=str(req.headers)
111
+ return gaul
112
+
113
+ def plex(prompt,mput,neg_prompt,modil,stips,scaly,csal,csbl,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)):
114
+ gc.collect()
115
+ adi=""
116
+ ldi=""
117
+
118
+ openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
119
+ controlnet = [
120
+ ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float32),
121
+ ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32),
122
+ ]
123
+ try:
124
+ crda=ModelCard.load(""+modil+"")
125
+ card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt")
126
+ cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt")
127
+ cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt")
128
+ mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE)
129
+ moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE)
130
+ if moch:
131
+ adi+=""+str(moch.group(1))+", "
132
+ else:
133
+ print("no floff trigger")
134
+ if mtch:
135
+ adi+=""+str(mtch.group(1))+", "
136
+ else:
137
+ print("no fluff trigger")
138
+ if card:
139
+ adi+=""+str(card)+", "
140
+ else:
141
+ print("no instance")
142
+ if cerd:
143
+ adi+=""+str(cerd)+", "
144
+ else:
145
+ print("no custom")
146
+ if cird:
147
+ adi+=""+str(cird)+", "
148
+ else:
149
+ print("no lora")
150
+ except:
151
+ print("no card")
152
+ try:
153
+ pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=False,torch_dtype=torch.float32, safety_checker=None))
154
+ pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
155
+ except:
156
+ gc.collect()
157
+ pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=True,torch_dtype=torch.float32, safety_checker=None))
158
+ pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=True,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
159
+ if los:
160
+ try:
161
+ lrda=ModelCard.load(""+los+"")
162
+ lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt")
163
+ lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt")
164
+ lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion")
165
+ ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE)
166
+ loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE)
167
+ if loch and lird:
168
+ ldi+=""+str(loch.group(1))+", "
169
+ else:
170
+ print("no lloff trigger")
171
+ if ltch and lird:
172
+ ldi+=""+str(ltch.group(1))+", "
173
+ else:
174
+ print("no lluff trigger")
175
+ if lard and lird:
176
+ ldi+=""+str(lard)+", "
177
+ else:
178
+ print("no instance")
179
+ ldi+=""
180
+ if lerd and lird:
181
+ ldi+=""+str(lerd)+", "
182
+ else:
183
+ print("no custom")
184
+ ldi+=""
185
+ except:
186
+ print("no trigger")
187
+ try:
188
+ pope.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",)
189
+ pope.fuse_lora(fuse_unet=True,fuse_text_encoder=False)
190
+ except:
191
+ print("no can do")
192
+ else:
193
+ los=""
194
+ pope.unet.to(memory_format=torch.channels_last)
195
+ pope = accelerator.prepare(pope.to("cpu"))
196
+ pipe.unet.to(memory_format=torch.channels_last)
197
+ pipe = accelerator.prepare(pipe.to("cpu"))
198
+ gc.collect()
199
+ apol=[]
200
+ height=hei
201
+ width=wei
202
+ prompt=""+str(adi)+""+str(ldi)+""+prompt+""
203
+ negative_prompt=""+neg_prompt+""
204
+ lora_scale=loca
205
+ if nut == 0:
206
+ nm = random.randint(1, 2147483616)
207
+ while nm % 32 != 0:
208
+ nm = random.randint(1, 2147483616)
209
+ else:
210
+ nm=nut
211
+ generator = torch.Generator(device="cpu").manual_seed(nm)
212
+ tilage = pope(prompt,num_inference_steps=5,height=height,width=width,generator=generator,cross_attention_kwargs={"scale": lora_scale}).images[0]
213
+ cannyimage = np.array(tilage)
214
+ low_threshold = 100
215
+ high_threshold = 200
216
+ fnamo=""+str(int(time.time()))+""
217
+ cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
218
+ cammyimage=Image.fromarray(cannyimage).save('./tmpo/'+fnamo+'_canny.png', 'PNG')
219
+ zero_start = cannyimage.shape[1] // 4
220
+ zero_end = zero_start + cannyimage.shape[1] // 2
221
+ cannyimage[:, zero_start:zero_end] = 0
222
+ cannyimage = cannyimage[:, :, None]
223
+ cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
224
+ canny_image = Image.fromarray(cannyimage)
225
+ pose_image = load_image(mput).resize((512, 512))
226
+ openpose_image = openpose(pose_image)
227
+ images = [openpose_image, canny_image]
228
+ omage=pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[csal, csbl])
229
+ for i, imge in enumerate(omage["images"]):
230
+ apol.append(imge)
231
+ imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG')
232
+ apol.append(openpose_image)
233
+ apol.append(cammyimage)
234
+ apol.append(canny_image)
235
+ apol.append(tilage)
236
+ openpose_image.save('./tmpo/'+fnamo+'_pose.png', 'PNG')
237
+ canny_image.save('./tmpo/'+fnamo+'_cann_im.png', 'PNG')
238
+ tilage.save('./tmpo/'+fnamo+'_tilage.png', 'PNG')
239
+ chdr(apol,prompt,modil,los,stips,fnamo,gaul)
240
+ return apol
241
+
242
+ def aip(ill,api_name="/run"):
243
+ return
244
+ def pit(ill,api_name="/predict"):
245
+ return
246
+
247
+ with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
248
+ out=gr.Gallery(label="Generated Output Image", columns=1)
249
+ inut=gr.Textbox(label="Prompt")
250
+ mput=gr.Image(type="filepath")
251
+ gaul=gr.Textbox(visible=False)
252
+ inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value")
253
+ btn=gr.Button("GENERATE")
254
+ with gr.Accordion("Advanced Settings", open=False):
255
+ inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value")
256
+ inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,")
257
+ inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
258
+ inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7)
259
+ csal=gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1)
260
+ csbl=gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1)
261
+ loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5)
262
+ indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
263
+ inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512)
264
+ inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512)
265
+
266
+ btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inot,inyt,inat,csal,csbl,indt,inwt,inht,inlt,loca,gaul])
267
+
268
+ iface.queue(max_size=1,api_open=False)
269
+ iface.launch(max_threads=20,inline=False,show_api=False)