|
import gradio as gr |
|
|
|
title = "BERT" |
|
|
|
description = "Gradio Demo for BERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1810.04805' target='_blank'>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</a></p>" |
|
|
|
examples = [ |
|
['Paris is the [MASK] of France.','bert-base-cased'] |
|
] |
|
|
|
|
|
io1 = gr.Interface.load("huggingface/bert-base-cased") |
|
|
|
io2 = gr.Interface.load("huggingface/bert-base-uncased") |
|
|
|
|
|
def inference(inputtext, model): |
|
if model == "bert-base-cased": |
|
outlabel = io1(inputtext) |
|
else: |
|
outlabel = io2(inputtext) |
|
return outlabel |
|
|
|
|
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["bert-base-cased","bert-base-uncased"], type="value", default="bert-base-cased", label="model")], |
|
[gr.outputs.Label(label="Output")], |
|
examples=examples, |
|
article=article, |
|
title=title, |
|
description=description).launch(enable_queue=True,cache_examples=True) |