Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
3 |
unmasker("Hello I'm a [MASK] model.")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertForMaskedLM, BertTokenizer
|
4 |
+
import asyncio
|
5 |
+
|
6 |
+
# Modell und Tokenizer laden mit force_download=True
|
7 |
+
model_name = "bert-base-uncased"
|
8 |
+
model = BertForMaskedLM.from_pretrained(model_name, force_download=True)
|
9 |
+
tokenizer = BertTokenizer.from_pretrained(model_name, force_download=True)
|
10 |
+
|
11 |
+
# Inferenz-Funktion definieren
|
12 |
+
def inference(input_text):
|
13 |
+
if "[MASK]" not in input_text:
|
14 |
+
return "Error: The input text must contain the [MASK] token."
|
15 |
+
|
16 |
+
# Tokenisierung
|
17 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
18 |
+
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
19 |
+
|
20 |
+
# Vorhersage
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
logits = outputs.logits
|
24 |
+
|
25 |
+
# Wahrscheinlichsten Token für [MASK] finden
|
26 |
+
mask_token_logits = logits[0, mask_token_index, :]
|
27 |
+
top_token = torch.topk(mask_token_logits, 1, dim=1).indices[0].tolist()
|
28 |
+
|
29 |
+
# Vorhersage in den Text einfügen
|
30 |
+
predicted_token = tokenizer.decode(top_token)
|
31 |
+
result_text = input_text.replace("[MASK]", predicted_token, 1)
|
32 |
+
|
33 |
+
return result_text
|
34 |
+
|
35 |
+
# Gradio Interface definieren
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=inference,
|
38 |
+
inputs="text",
|
39 |
+
outputs="text",
|
40 |
+
examples=[
|
41 |
+
["The capital of France is [MASK]."],
|
42 |
+
["The quick brown fox jumps over the [MASK] dog."]
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
# Interface starten
|
47 |
+
if __name__ == "__main__":
|
48 |
+
# Asynchronen Ereignisloop manuell erstellen und zuweisen
|
49 |
+
loop = asyncio.new_event_loop()
|
50 |
+
asyncio.set_event_loop(loop)
|
51 |
+
|
52 |
+
iface.launch(server_port=7862)
|
53 |
+
|
54 |
+
|
55 |
from transformers import pipeline
|
56 |
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
57 |
unmasker("Hello I'm a [MASK] model.")
|