import gradio as gr title = "BERT" description = "Gradio Demo for BERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
" examples = [ ['Paris is the [MASK] of France.', 'bert-base-cased'] ] # Lade die Interfaces für die Modelle io1 = gr.load("huggingface/bert-base-cased") io2 = gr.load("huggingface/bert-base-uncased") def inference(inputtext, model): if model == "bert-base-cased": outlabel = io1(inputtext) elif model == "bert-base-uncased": outlabel = io2(inputtext) else: outlabel = "Invalid model selected" # Sicherstellen, dass die Ausgabe eine formatierte Zeichenkette ist return str(outlabel) # Aktualisierte Gradio-Syntax gr.Interface( fn=inference, inputs=[ gr.Textbox(label="Context", lines=10, placeholder="Enter text with [MASK] token"), gr.Dropdown(choices=["bert-base-cased", "bert-base-uncased"], value="bert-base-cased", label="model") ], outputs=gr.Label(label="Output"), examples=examples, article=article, title=title, description=description ).launch()